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Abstract. We investigate the problem of finding integers k such that appending any number
of copies of the base-ten digit d to k yields a composite number. In particular, we prove that
there exist infinitely many integers coprime to all digits such that repeatedly appending any
digit yields a composite number.

1. INTRODUCTION. Recently, L. Jones [5] asked about integers that yield only
composites when a sequence of the same base-ten digit is appended to the right. He
showed that 37 is the smallest number with this property when appending the digit
d = 1. For each digit d ∈ {3, 7, 9}, he also found numbers coprime to d that yield only
composites upon appending ds.

In this paper, we find a single integer that works for all digits simultaneously. More
precisely, we prove the following.

Theorem. There are infinitely many positive integers k with gcd(k, 2 · 3 · 5 · 7) = 1,
such that for any base-ten digit d, appending any number of ds to k yields a composite
number.

Further, we investigate the question of the smallest numbers that remain composite
upon appending strings of a digit for each particular digit. Jones found, for digits 3, 7,
9, respectively, the examples 4070, 606474, and 1879711. It appears that 4070 is the
smallest for d = 3; for digit 7 we found 891, which is almost certainly minimal; and
for digit 9, the likely answer 10175 was discovered by [14]. In the next section, we
explain the obstructions to proving that these three answers are the smallest.

2. SEEDS. Given a digit d , let’s use the term seed for a number coprime to d such
that appending any number of ds on the right yields a composite. The smallest positive
integer with this property will be referred to as a minimal seed. Only the cases d ∈
{1, 3, 7, 9} are nontrivial. Jones proved that 37 is the minimal seed for d = 1, and he
also found the seed 4070 for digit 3. For every k < 4070, except 817, we have found a
value of n such that appending n 3s yields a prime or, in three cases, a probable prime.
For 817, appending up to 554789 3s yielded only composites. But factorizations show
no apparent obstruction to primality, so we conjecture that 4070 is the minimal seed
for digit 3.

A key concept in this area is the notion of a covering set, introduced by P. Erdős
[3]. Such a set corresponds to a finite list of primes such that every member of a given
sequence is divisible by one of the primes. Here the sequences are the numbers, which
we call sn , obtained by appending n copies of a digit d to an initial value k; typically,
the numbers are proved composite by finding a covering set. For example, when n
7s are appended to 891, the resulting number is divisible by 11, 37, 11, 3, 11, or 13
according to the mod-6 residue of n (starting at 0).
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To see this, observe that sn is given by the formula

sn = k · 10n
+

d(10n
− 1)

9
.

Because 106
≡ 1 modulo each of the four primes, easy modular arithmetic shows that

s6m+i ≡ 0 (mod p) for the cases p = 11, 13, and 37, where i , depending on p, is 0,
2, 4, 5, or 1. The same is true for i = 3, the case where p = 3, because 106m+3

− 1 is
divisible by 27, thus eliminating the denominator of 9 in these cases. This proves that
891 is a seed for digit 7.

When a sequence of primes (p0, p1, . . . , pr−1) divides the corresponding sequence
of terms sn for a digit d and seed k, we say that the primes form a prime cover for
(k, d). For example, (11, 37, 11, 3, 11, 13) is a prime cover for (891, 7).

We have shown that 891 is a minimal seed for digit 7, under the assumption that
appending 11330 7s to 480, and 28895 7s to 851 yields primes. Each of these two
large numbers has passed 200 strong pseudoprime tests. For all other potential seeds
below 891, we have found primes that can be certified using elliptic curve methods
with Mathematica or Primo [9]. We used Primo on the largest cases; the largest was
9777 . . . 7 with 2904 7s, which took 45 hours.

The digit-9 case asks for an integer k such that (k + 1)10n
− 1 is always composite;

it is thus a variation on the classic Riesel problem [7, 11, 12, 13], which addresses
the same question in base 2. For that classic case, it is known that 509202 is a seed,
meaning that 509203 · 2n

− 1 is composite for n ≥ 0. Participants in the Riesel project
have also investigated the decimal case, and showed [14] that the expected minimal
seed for digit 9 is 10175. To see that this is a seed, we again consider the number of
appended digits modulo 6 and find a prime cover: in this case (11, 7, 11, 37, 11, 13).
Of the numbers smaller than 10175, only 4420 has not been eliminated as a seed.
The Riesel project [12, 13] has checked it through the addition of 940000 9s without
finding a prime. In this case, primality proving for a probable prime is easy using the
Lucas n + 1 test [2].

Coverings are not the only tool in these investigations, since sometimes factoriza-
tions yield all the compositeness that is sought. Consider the situation with digit 1 but
working in base b = m2 with m odd. The minimal seed in all such cases is 1 because,
for n appended 1s to the seed 1, with n even, the factorization

111 . . . 11b =
bn+1
− 1

b − 1
=

(
mn+1

− 1

m − 1

) (
mn+1

+ 1

m + 1

)

yields integer factors, and so the result is composite. When n is odd, the total number
of 1s is even, so compositeness is clear. Similar factorization methods show that the
minimal seed for digit 1 in base 4 is 5, for digit 3 in base 4 is 8, and for digit 8 in base
9 is 3.

3. A PANDIGITAL SEED. It is not hard to find an integer that remains composite
when any sequence of the form ddd . . . d is appended on the right, where d is any
decimal digit. We leave it as an exercise to show that 6930 does the job; only the case
d = 1 requires a prime cover, and the one used in §2 for 891—(11, 37, 11, 3, 11, 13)—
works. Some prime searching shows that 6930 is the smallest such example (the most
difficult candidate to eliminate was 6069; 1525 1s yielded a prime).
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A more natural problem in our context is to consider only the digits 1, 3, 7, 9, and
ask for an integer k that is a seed for each of these four digits (thus k is coprime to 3
and 7). We call such a positive integer k a pandigital seed.

For a prime p coprime to 10, we use the term period of p to mean the smallest
positive integer r so that, for all n, sn+r ≡ sn (mod p). The period of 3 is 3, while for
other primes it is simply the order of 10 modulo p. If the period of a prime p is small,
then p may divide a large proportion of the terms of the sequence sn . In particular, if
the period is r , then either every r th term of {sn} is divisible by p or no terms of the
sequence are divisible by p.

Theorem. A pandigital seed exists. An example is 4942768284976776320.

Proof. A proof requires only checking that particular covers work, but we outline the
method by which the large seed and corresponding prime covers were found. We find,
for each digit, a prime cover so that the congruence conditions on k arising from the
four covers do not contradict each other. This method of coherent prime covers was
used in [1, 4, 8] to find infinitely many values k so that both k2n

+ 1 and k2n
− 1 are

composite for all n, and solve related problems. To find such covers, we first need to
analyze the condition that a term in the sequence {sn} is divisible by a given prime p.

If we assume that p /∈ {2, 3, 5}, then sn ≡ 0 (mod p) if and only if p divides

9k · 10n
+ d(10n

− 1),

which is equivalent to

k ≡ 9−1d(10−n
− 1) (mod p). (1)

If p = 3, then we instead have the condition

sn ≡ k + d
10n
− 1

9
≡ 0 (mod 3),

which, because (10n
− 1)/9 ≡ n (mod 3), reduces to k ≡ 2dn (mod 3). It is useful to

observe that when n is even then 10n
≡ 1 (mod 11), so that in this case sn is congruent

modulo 11 to the seed itself. Therefore, the condition k ≡ 0 (mod 11) makes 11 a
factor of sn whenever n is even. Hence we may focus on forcing composites for odd
values of n.

Since the period of p = 37 is 3, we consider this prime next. When the number of
appended digits is n = 6i + 3, equation (1) gives

k ≡ 10−(6i+3)
− 1 =

(
10−6

)i
· 10−3

− 1 ≡ 0 (mod 37).

Application of (1) to other values of n shows that 37 divides sn for n ≡ 0, 1, 2 (mod 3)

provided k ≡ 0, 11d, 10d (mod 37), respectively. If k ≡ 0 (mod 37), then 37 may be
used as a prime divisor no matter which digit is appended. Therefore, we can assume
k ≡ 0 (mod 37), and so we have that sn is divisible by 11 when n ≡ 0, 2, or 4 (mod 6)

and by 37 when n ≡ 0 or 3 (mod 6). This leaves only the eight cases n ≡ 1 or 5
(mod 6) with digits 1, 3, 7, and 9 to be taken care of by other primes, as shown in
Table 1.

To find divisors of sn for n ≡ 1 or 5 (mod 6), we note that the primes 7 and 13
have period 6. Solving congruence (1) leads to the conditions listed in Table 2. These
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Table 1. Divisors of sn for digit d using primes 11 and 37
with a seed that satisfies k ≡ 0 (mod 11 · 37).

n (mod 6)

digit 0 1 2 3 4 5

1 11 ? 11 37 11 ?

3 11 ? 11 37 11 ?

7 11 ? 11 37 11 ?

9 11 ? 11 37 11 ?

show that if k ≡ 2 (mod 7), then two of the eight cases are divisible by 7: the digit 1
with n ≡ 1 (mod 6) and digit 9 with n ≡ 5 (mod 6) cases. Similarly, any of k ≡ 1,
3, or 9 (mod 13) provides divisibility for two of the cases. Each of these cases is then
combined with a set of additional primes that contains 3, 101, 41, 271, 73, and 137, all
of which have period 8 or less. Finally, a computer search found a list of primes that
handles all cases.

Table 2. Conditions on k to guarantee that 7 or 13 divides the number obtained by appending a digit
string to k.

n ≡ 1 (mod 6) n ≡ 5 (mod 6) n ≡ 1 (mod 6) n ≡ 5 (mod 6)

digit 1 k ≡ 2 (mod 7) k ≡ 1 (mod 7) k ≡ 9 (mod 13) k ≡ 1 (mod 13)

digit 3 k ≡ 6 (mod 7) k ≡ 3 (mod 7) k ≡ 1 (mod 13) k ≡ 3 (mod 13)

digit 7 k ≡ 0 (mod 7) k ≡ 0 (mod 7) k ≡ 11 (mod 13) k ≡ 7 (mod 13)

digit 9 k ≡ 4 (mod 7) k ≡ 2 (mod 7) k ≡ 3 (mod 13) k ≡ 9 (mod 13)

The smallest value of k found so far uses the primes 3, 7, 11, 13, 31, 37, 41, 73,
101, 137, 211, 241, and 271. The cover-lengths for the four digit-cases are 6, 6, 30,
and 8, respectively. The prime covers for the four digits are as follows:

d = 1 : (11, 3, 11, 37, 11, 13),

d = 3 : (11, 13, 11, 37, 11, 7),

d = 7 : (11, 3, 11, 37, 11, 271, 11, 3, 11, 37, 11, 41, 11, 3, 11, 37, 11, 31,

11, 3, 11, 37, 11, 211, 11, 3, 11, 37, 11, 241),

d = 9 : (11, 73, 11, 101, 11, 137, 11, 101).

Tables 3 and 4 show the correspondence between the values of n and k for each
digit. For example, when we are appending n 7s to k where n ≡ 11 (mod 30), we see
that 41 divides sn whenever k ≡ 28 (mod 41).

We apply the Chinese Remainder Theorem to all of the conditions on k in Tables 3
and 4 to find the pandigital seed k = 4942768284976776320.

Because k is not divisible by 3 or 7, we can add k ≡ 1 (mod 10) to the conditions
used in the proof, which then gives us
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Table 3. Residue classes for the seed k that guarantee the compositeness of sn

when 1 or 3 is appended.

digit 1

classes for n classes for k

0 (mod 2) 0 (mod 11)

1 (mod 6) 2 (mod 3)

3 (mod 6) 0 (mod 37)

5 (mod 6) 1 (mod 13)

digit 3

classes for n classes for k

0 (mod 2) 0 (mod 11)

1 (mod 6) 1 (mod 13)

3 (mod 6) 0 (mod 37)

5 (mod 6) 3 (mod 7)

Table 4. Residue classes for the seed k that guarantee the compositeness of sn when
7 or 9 is appended.

digit 7

classes for n classes for k

0 (mod 2) 0 (mod 11)

1 (mod 6) 2 (mod 3)

3 (mod 6) 0 (mod 37)

5 (mod 30) 0 (mod 271)

11 (mod 30) 28 (mod 41)

17 (mod 30) 20 (mod 31)

23 (mod 30) 106 (mod 211)

29 (mod 30) 7 (mod 241)

digit 9

classes for n classes for k

0 (mod 2) 0 (mod 11)

1 (mod 8) 21 (mod 73)

3 (mod 4) 9 (mod 101)

5 (mod 8) 40 (mod 137)

1970728582053685108721 (mod 19657858137687083324010),

a value of k that satisfies the theorem as stated in §1. This yields infinitely many such
values.

4. OPEN PROBLEMS. We conclude with some unsolved problems.

1. Find a number of 3s that can be appended to 817 to obtain a probable prime, thus
completing the proof, modulo probable primes, that 4070 is the minimal seed for
the digit 3.

2. Find a number of 9s that can be appended to 4420 to produce a prime.
3. Certify primality of 480 with 11330 7s appended and 851 with 28895 7s. Doing

so would complete the digit-7 case.
4. Data for all bases up to 10 can be found at [10]. Similar problems exist for these

bases.
5. Find a base-ten pandigital seed that is smaller than 4942768284976776320.
6. Investigate for various bases the situation where the appended digits come from

a fixed sequence, as was done by Jones and White [6] for base ten.
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