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Abstract. We define g(n) to be the maximal order of an element of the symmetric
group on n elements. Results about the prime factorization of g(n) allow a reduction
of the upper bound on the largest prime divisor of g(n) to 1.328

√
n log n.

Let Sn be the symmetric group on n letters.

Definition. g(n) = max {ord(σ) |σ ∈ Sn}.
The first work on g(n) was done by Landau [1] in 1903. He showed that log g(n) ∼√

n log n as n → ∞. In 1984, Massias [2] showed an upper bound for log g(n)√
n log n

,

log g(n) ≤ a
√

n logn a = 1.05313 . . . n ≥ 1,

with a attained for n = 1, 319, 166.
Let P (g(n)) be the largest prime divisor of g(n). In 1969, Nicolas [4] proved that

P (g(n)) ∼ √
n log n as n → ∞. In 1989, Massias, Nicolas, and Robin [3] showed

that P (g(n)) ≤ 2.86
√

n log n, n ≥ 2. They conjectured that P (g(n))√
n log n

achieves a

maximum (1.265 . . . ) for n ≥ 5 at n = 215, with P (g(215)) = 43. They note
that improving this bound using the techniques of their proof would require “very
extensive computation,” and even then would not be able to reduce the constant
in the bound below 2.

Using different techniques, however, we can improve this result to the following

Theorem. For each integer n ≥ 5, we have

P (g(n)) ≤ 1.328
√

n log n.

Our proof begins with the simple observation that g(n) = max {ord(σ) |σ ∈ S ′
n},

where S′
n is the subset of Sn consisting of elements that are the product of disjoint

cycles of prime power length.

1991 Mathematics Subject Classification. 20B40.
A portion of this research, including the computations, was done at the Supercomputing Re-

search Center. The author would also like to thank the referee for helpful suggestions.

Typeset by AMS-TEX

1



2 JON GRANTHAM

To see this, recall the fact that we can write any σ ∈ Sn as the product of disjoint
cycles. Then ord(σ) is the least common multiple of the cycle lengths. Consider a
cycle of length ab with (a, b) = 1, a, b > 1. The product of a cycle of length a with
one of length b also has order ab and is a permutation on fewer elements. Thus,
given any element of Sn, we may find another that has the same order and is a
product of disjoint cycles of prime power length.

Definition. For each natural number M , let `(M) =
∑

pα‖M

pα.

We observe that `(M) is the shortest length of a permutation of order M . Thus,
we can characterize g(n) in terms of ` as follows:

g(n) = max {M | `(M) ≤ n}.

In particular, `(g(n)) ≤ n.
Nicolas [6] describes an algorithm for computing g(n). Employing a variation of

this algorithm, I computed exact values of g(n) for n ≤ 500, 000 on a Sun 4/390.
The accuracy of the computation was checked by calculating values of g(n) using the
set G described in [3] and verifying that they matched those in the computations.

Analysis of the computations confirmed that for 5 ≤ n ≤ 500, 000, P (g(n))√
n log n

attains

a maximum at n = 215.

Lemma 1 (Nicolas [5]). Let p, p′, and q be distinct primes, with q ≥ p + p′. If q

divides g(n), then at least one of p and p′ divides g(n).

Proof. Suppose p and p′ are primes not dividing g(n). Assume there is a prime
q ≥ p + p′ with q | g(n). Without loss of generality, p < p′. Choose k such that

pk + p′ ≤ q ≤ pk+1 + p′ − 1.

Let M = pkp′g(n)
q

. Since q | g(n), M is an integer. Then

`(M) ≤ `(g(n)) + (pk + p′ − q) ≤ `(g(n)) ≤ n.

Thus, an element of order M can be written as a permutation on n letters. Also,

pkp′ − q ≥ pkp′ − pk+1 − p′ + 1 = pk(p′ − p) − p′ + 1

≥ p(p′ − p) − p′ + 1 = (p − 1)(p′ − p − 1) ≥ 0.

Therefore, pkp′ > q, so M > g(n). But g(n) is the maximal order of a permutation
on n letters. Thus, we have a contradiction, and the lemma is proven.

Write q = P (g(n)). We immediately get the following

Corollary. At most one prime less than q

2 fails to divide g(n).

Lemma 2. Suppose 0 < α < β < 1. If at least one prime in the interval (αq, βq)

divides g(n), then at most one prime in the interval (
√

βq,
(1+α)q

2 ) fails to divide

g(n).
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Proof. If two primes in the interval (
√

βq,
(1+α)q

2 ) fail to divide g(n), call them p

and p′. Let q′ be a prime in the interval (αq, βq) dividing g(n). Let M = pp′

qq′
g(n).

Then

`(M) ≤ p + p′ − q − q′ + `(g(n)) ≤ (1 + α)q − q − αq + `(g(n)) = `(g(n)).

But pp′ − qq′ > (
√

βq)2 − q(βq) = 0, so M > g(n), giving a contradiction.

Proof of Theorem. By the computations, we may take n > 500,000. We may also
assume q ≥ 1.3

√
500000 log500000 > 3329. Using the results of Schoenfeld [8] for

large q, and computations for small q > 3329, we see that there are always at
least two primes in the intervals (αiq, βiq), with α1 = .2426, β1 = .25, α2 = .3746,
β2 = .386, α3 = .4632, β3 = .4723, α4 = .5248, β4 = .5352, α5 = .57, β5 = .5812,
α6 = .6044, β6 = .6162, α7 = .6312, β7 = .6435, α8 = .6534, β8 = .6652, and
α9 = .6714, β9 = .6834. By Lemma 1, at most one of the two or more primes in
any of the first three intervals fails to divide g(n). Applying Lemma 2, we get that

at most one prime in each interval (
√

βiq,
(1+αi)q

2 ) fails to divide g(n), for i ≤ 3.
This fact in turn implies that at most one prime in each interval (αiq, βiq) fails to
divide g(n) for 4 ≤ i ≤ 9. Applying Lemma 2 again, we see that at most one prime

in each interval (
√

βiq,
(1+αi)q

2 ) fails to divide g(n) for 1 ≤ i ≤ 9.
We note that these intervals cover (.5q, .8357q). So at most ten primes less than

.8357q fail to divide g(n), and they can be at most q
2 , (1+α1)q

2 , . . . , and (1+α9)q
2 .

Therefore,

g(n) ≥
q

∏

p≤.8357q

p

q

2

∏ 1+αi

2 q
.

Taking logarithms, we get

log g(n) ≥ θ(.8357q)− log
1

2
−

∑

log

(

1 + αi

2
q

)

,

where θ is the Chebyshev function, θ(x) =
∑

p≤x

log p.

For q > 3329 the sum of the terms on the right is less than .01338q, so

log g(n) ≥ θ(.8357q)− .01338q.

Using the estimates for θ(x) in [7], we get

log g(n) ≥ .79307q.

From [3], 1.05314
√

n log n ≥ log g(n), so

1.328
√

n log n ≥ 1.05314

.79307

√

n log n ≥ q.

It is likely that further computation would be able to show that P (g(n))√
n log n

attains

a maximum at n = 215 for all n ≥ 5.
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