Episode III: German Conjectures, an Italian Poet and Brazilian Primes

Jon Grantham

Institute for Defense Analyses
Center for Computing Sciences
Bowie, Maryland

February 2019

Episode I: Primes of the form $x^{2}+1$

- At MASON I, I presented computations of primes of the form $x^{2}+1$ for $x<2.5 \times 10^{14}$.
- Using a modified version of the sieve of Eratosthenes, you can compute for $x<B$ in time $O(B \log B \log \log B)$.
- The picture got more complicated for parallel computation.

Episode II: Goldbach's Other Other Conjecture

- Let A be the set of numbers a for which $a^{2}+1$ is prime. Then every $a \in A(a>1)$ can be written in the form $a=b+c$, for $b, c \in A$.

Episode II: Goldbach's Other Other Conjecture

- Let A be the set of numbers a for which $a^{2}+1$ is prime. Then every $a \in A(a>1)$ can be written in the form $a=b+c$, for $b, c \in A$.
- This comes from a October 1, 1742 letter from Goldbach to Euler.
- At MASON II, I presented joint work with Hester Graves which verified this conjecture for $a<2.5 \times 10^{14}$.

obxkcd

WEAK: EVERY ODD NUMBER GREATER THAN 5 ISTHE SUM OF THREE PRIMES

STRONG:

EVERY EVEN NUMBER GREATER THAN 2 IS THE SUM OF TWO PRIMES

VERY WEAK:

EXTREMELY

 WEAK:```
NUMBERS JUST
 KEEPGONNG
```

GOLDBACH CONJECTURES

VERY
STRONG:

- At MASON II, I said, "I will never talk about this and not include this comic." So I guess I'm stuck.
(Used under a Creative Commons Attribution-NonCommercial 2.5 license. See xckd.com/license.html)


## Episode III: Cyclotomic Goldbach

- Conjecture: Let $\phi_{k}(x)$ be the $k$ th cyclotomic polynomial.
- Let $A_{k}$ be the set of positive integers such that $\phi_{k}(x)$ is prime.
- Then any (sufficiently large) positive (even) integer can be written as the sum of two elements in $A_{k}$.


## Episode III: Cyclotomic Goldbach

- Conjecture: Let $\phi_{k}(x)$ be the $k$ th cyclotomic polynomial.
- Let $A_{k}$ be the set of positive integers such that $\phi_{k}(x)$ is prime.
- Then any (sufficiently large) positive (even) integer can be written as the sum of two elements in $A_{k}$.
- When $k=1$ or $k=2$, this implies the more famous Goldbach conjecture.
- When $k=4$, this implies a stronger form of the less famous Goldbach conjecture.
- (In both of these cases "sufficiently large" is overkill, but "even" is needed.)


## Episode III: Cyclotomic Goldbach

- Conjecture: Let $\phi_{k}(x)$ be the $k$ th cyclotomic polynomial.
- Let $A_{k}$ be the set of positive integers such that $\phi_{k}(x)$ is prime.
- Then any (sufficiently large) positive (even) integer can be written as the sum of two elements in $A_{k}$.
- When $k=1$ or $k=2$, this implies the more famous Goldbach conjecture.
- When $k=4$, this implies a stronger form of the less famous Goldbach conjecture.
- (In both of these cases "sufficiently large" is overkill, but "even" is needed.)
- This formulation was prompted by an excellent question someone asked at MASON II.


## What about $k=3 ?$

- Now we are talking about the question of computation of primes of the form $x^{2}+x+1$.
- The largest published computation I could find was up to $1.21 \times 10^{9}$, by Poletti (1929).
- It was easy to modify the $x^{2}+1$ code to compute a table up to $10^{12}$ and verify the conjecture.
- Still no exceptions, but all odd numbers greater than 1 are also represented as $a+b$ where $a^{2}+a+1$ and $b^{2}+b+1$ are prime.
- Fun fact: $\phi_{3}(x-1)=\phi_{6}(x)$, so we have done the $k=6$ case.


## An Interlude about Luigi Poletti



- Luigi Poletti (1864-1967) was an banker from Pontremoli in Italy who stumbled across a book of Derrick Lehmer at age 47.
- He spoke at the 1928 ICM.
- After World War II, he served on a commission to rebuild French science.
- He wrote original poems in and translated Dante into his native dialect (Pontremolese).
- There is a Via Luigi Poletti in Pontremoli.


## $k=5$

- It is possible to modify the existing algorithm to compute primes of the form $x^{4}+x^{3}+x^{2}+x+1$.
- But to compute up to $x<B$, we need to sieve up to $B^{2}$.
- So the running time is now $O\left(B^{2} \log B \log \log B\right)$.
- In other words, a table for $B<10^{6}$ would take as long as our $k=3$ table for $B<10^{12}$.


## A better algorithm

- If we sieve up to $B$, we get numbers of the form $x^{4}+x^{3}+x^{2}+1$ which are $B$-rough.
- Heuristically, there should be $O(x / \log x)$ of these. (Buchstab)
- Need a fast way to distinguish primes from composites.


## A better algorithm

- If we sieve up to $B$, we get numbers of the form $x^{4}+x^{3}+x^{2}+1$ which are $B$-rough.
- Heuristically, there should be $O(x / \log x)$ of these. (Buchstab)
- Need a fast way to distinguish primes from composites.
- The Pocklington-Lehmer test on $N$ runs in $O\left(\log ^{2} N\right)$ time if you can fully factor a piece of $N-1$ of size $N^{1 / 2}$.
- Here, $N=x^{4}+x^{3}+x^{2}+x+1$, so $N-1=x^{4}+x^{3}+x^{2}+x=x(x+1)\left(x^{2}+1\right)$. So you can!
- We can still generate a list up to $B$ in time $O(B \log B \log \log B)$
- So verified up to $10^{12}$.
- List of exceptions: $5,6,10,11,16,21,27,33,38,49,82,484$.


## Brazilian Primes

- Brazilian Primes are primes that are all 1s (repunits) in some base (of length at least 3).
- For primes $k>2$, primes represented by the $k$ th cyclotomic polynomial are Brazilian primes.
- First introduced by Schott (2010).
- Thanks to Hester for translating from the French.
- A number of interesting questions we hope to study.


## Future Work

- Extend tables?
- $k=7$ requires use of Brillhart-Lehmer-Selfridge test (factorization of $N-1$ up to $N^{1 / 3}$ ).
- Find application of Konyagin-Pomerance (which works with $N^{3 / 10}$.
- This undoubtedly generalizes to arbitrary polynomials. Is there any fun there?
- Conditional proofs of cyclotomic Goldbach?

