Repeatedly Appending Digits and Only Finding Composites

Jon Grantham

Witold Jarnicki John Rickert Stan Wagon

September 2012

Jon Grantham Witold Jarnicki John Rickert Stan Wagon Repeatedly Appending Digits and Only Finding Composites

 ▶ 11 is prime.

- 4 回 2 - 4 □ 2 - 4 □

- 11 is prime.
- 21 is composite.

< □ > < □ > < □ >

- 11 is prime.
- 211 is prime.

▲□ ▶ ▲ □ ▶ ▲ □ ▶

- 11 is prime.
- 211 is prime.
- 31 is prime.
- 41 is prime.

- 17

- - E - E

< ≣ >

- 11 is prime.
- 211 is prime.
- 31 is prime.
- 41 is prime.
- 51 is composite.

- 11 is prime.
- 211 is prime.
- 31 is prime.
- 41 is prime.
- 511 is composite.

-

- 11 is prime.
- 211 is prime.
- 31 is prime.
- 41 is prime.
- 5111 is composite.

< ∃⇒

- 11 is prime.
- 211 is prime.
- 31 is prime.
- 41 is prime.
- 51111 is composite.

- 11 is prime.
- 211 is prime.
- 31 is prime.
- 41 is prime.
- 511111 is prime.

A⊒ ▶ ∢ ∃

- 11 is prime.
- 211 is prime.
- 31 is prime.
- 41 is prime.
- 511111 is prime.
- ▶ 61 is prime.
- 71 is prime.
- 811 is prime.
- 911 is prime.
- 101 is prime.

- 11 is prime.
- 211 is prime.
- 31 is prime.
- 41 is prime.
- 511111 is prime.
- ▶ 61 is prime.
- 71 is prime.
- 811 is prime.
- 911 is prime.
- 101 is prime.
- 111 is composite.

- 11 is prime.
- 211 is prime.
- 31 is prime.
- 41 is prime.
- 511111 is prime.
- ▶ 61 is prime.
- 71 is prime.
- 811 is prime.
- 911 is prime.
- 101 is prime.
- 1111 is composite.

- 11 is prime.
- 211 is prime.
- 31 is prime.
- 41 is prime.
- 511111 is prime.
- ▶ 61 is prime.
- 71 is prime.
- 811 is prime.
- 911 is prime.
- 101 is prime.

▶ ...

- 11 is prime.
- 211 is prime.
- 31 is prime.
- 41 is prime.
- 511111 is prime.
- 61 is prime.
- 71 is prime.
- 811 is prime.
- 911 is prime.
- 101 is prime.

• Let
$$s_n^{d,b}(k) = kb^n + d(b^n - 1)/(b - 1)$$
.

- 4 回 2 - 4 回 2 - 4 回 2 - 4

æ

- Let $s_n^{d,b}(k) = kb^n + d(b^n 1)/(b 1)$.
- In other words, the result of appending n copies of the digit d to k in base b.

・ 同 ト ・ ヨ ト ・ ヨ ト

- Let $s_n^{d,b}(k) = kb^n + d(b^n 1)/(b 1)$.
- In other words, the result of appending n copies of the digit d to k in base b.
- In general, for every b, k and d, is there a positive integer n such that s_n^{d,b}(k) is prime?

・ 同 ト ・ ヨ ト ・ ヨ ト …

- Let $s_n^{d,b}(k) = kb^n + d(b^n 1)/(b 1)$.
- In other words, the result of appending n copies of the digit d to k in base b.
- In general, for every b, k and d, is there a positive integer n such that s_n^{d,b}(k) is prime?

No.

・ 同 ト ・ ヨ ト ・ ヨ ト

Base 10, Digit 1

- ► A 2011 article in the American Math. Monthly by Lenny Jones gives the example of 37, where for all n > 0, s_n^{1,10}(37) is composite.
- ▶ He showed that 37 is minimal by exhibiting values of *n* such that $s_n^{1,10}(k)$ is prime for all $1 \le k \le 36$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Base 10, Digit 1

- ► A 2011 article in the American Math. Monthly by Lenny Jones gives the example of 37, where for all n > 0, s_n^{1,10}(37) is composite.
- ▶ He showed that 37 is minimal by exhibiting values of *n* such that $s_n^{1,10}(k)$ is prime for all $1 \le k \le 36$.
- What happens for 37? When b = 10, d = 1,

・ 同 ト ・ ヨ ト ・ ヨ ト …

Base 10, Digit 1

- ► A 2011 article in the American Math. Monthly by Lenny Jones gives the example of 37, where for all n > 0, s_n^{1,10}(37) is composite.
- ▶ He showed that 37 is minimal by exhibiting values of *n* such that $s_n^{1,10}(k)$ is prime for all $1 \le k \le 36$.
- What happens for 37? When b = 10, d = 1,
- If $n \equiv 0 \pmod{3}$, $s_n^{1,10}(k) \equiv k \pmod{37}$.
- If $n \equiv 2 \pmod{3}$, $s_n^{1,10}(k) \equiv k+2 \pmod{3}$.
- If $n \equiv 1 \pmod{6}$, $s_n^{1,10}(k) \equiv 3k + 1 \pmod{7}$.
- ▶ If $n \equiv 4 \pmod{6}$, $s_n^{1,10}(k) \equiv 3k + 6 \pmod{13}$.

・ 同 ト ・ ヨ ト ・ ヨ ト

- ► A 2011 article in the American Math. Monthly by Lenny Jones gives the example of 37, where for all n > 0, s_n^{1,10}(37) is composite.
- ▶ He showed that 37 is minimal by exhibiting values of *n* such that $s_n^{1,10}(k)$ is prime for all $1 \le k \le 36$.
- What happens for 37? When b = 10, d = 1,
- If $n \equiv 0 \pmod{3}$, $s_n^{1,10}(k) \equiv k \pmod{37}$.
- If $n \equiv 2 \pmod{3}$, $s_n^{1,10}(k) \equiv k+2 \pmod{3}$.
- If $n \equiv 1 \pmod{6}$, $s_n^{1,10}(k) \equiv 3k+1 \pmod{7}$.
- If $n \equiv 4 \pmod{6}$, $s_n^{1,10}(k) \equiv 3k + 6 \pmod{13}$.
- ▶ In other words, **covering congruences** ensure that each $s_n^{1,10}(37)$ is divisible by one of these four primes.

(日本) (日本) (日本)

• Jones finds a covering congruence that shows that $s_n^{3,10}(4070)$ is always composite, but does not show that 4070 is minimal.

- ► Jones finds a covering congruence that shows that $s_n^{3,10}(4070)$ is always composite, but does not show that 4070 is minimal.
- For every k < 4070, we exhibit a prime value of s_n^{3,10}(k), except when k = 817.

伺 ト イヨト イヨト

- ► Jones finds a covering congruence that shows that $s_n^{3,10}(4070)$ is always composite, but does not show that 4070 is minimal.
- For every k < 4070, we exhibit a prime value of s_n^{3,10}(k), except when k = 817.
- The value $s_n^{3,10}(817)$ is composite for $1 \le n \le 554,789$.
- But factorizations show no apparent obstruction to primality, so we conjecture that 4070 is minimal for digit 3.

・ 同 ト ・ ヨ ト ・ ヨ ト …

 Jones finds that appending 7s to 606, 474 produces only composites.

回 と く ヨ と く ヨ と

- Jones finds that appending 7s to 606, 474 produces only composites.
- We find the same for 891.

伺下 イヨト イヨト

- Jones finds that appending 7s to 606, 474 produces only composites.
- We find the same for 891.
- We find primes for k < 891

向下 イヨト イヨト

- Jones finds that appending 7s to 606, 474 produces only composites.
- We find the same for 891.
- We find primes for k < 891, except when k = 480 or k = 851.

・ 同 ト ・ ヨ ト ・ ヨ ト

- Jones finds that appending 7s to 606, 474 produces only composites.
- We find the same for 891.
- We find primes for k < 891, except when k = 480 or k = 851.
- ► The values $s_{11330}^{7,10}(480)$ and $s_{28895}^{7,10}(851)$ have each passed 200 strong pseudoprime tests.
- (It took 45 hours to prove the primality of $s_{2904}^{7,10}(9)$.)

・ 同 ト ・ ヨ ト ・ ヨ ト …

▶ Jones found 1,879,711.

・ロト ・回ト ・ヨト ・ヨト

3

- ▶ Jones found 1,879,711.
- ▶ The Riesel Project found 10, 175.

- - 4 回 ト - 4 回 ト

æ

- ▶ Jones found 1,879,711.
- ▶ The Riesel Project found 10, 175.
- For all smaller k except 4420 and 7018, there are primes.
- ► No pseudoprimes because $s_n^{b-1,b}(k) = (k+1) \cdot b^n 1$.
- Primality proving is "easy" when you can factor p + 1.
- ► 4420 and 7018 checked up to n = 750,000 without finding primes.

・ 同 ト ・ ヨ ト ・ ヨ ト

- ▶ Jones found 1,879,711.
- ▶ The Riesel Project found 10,175.
- For all smaller k except 4420 and 7018, there are primes.
- ► No pseudoprimes because $s_n^{b-1,b}(k) = (k+1) \cdot b^n 1$.
- Primality proving is "easy" when you can factor p + 1.
- ► 4420 and 7018 checked up to n = 750,000 without finding primes.
- Riesel Project primarily concerned with b = 2.
- It is known $s_n^{1,2}(509202)$ is always composite.
- There are 55 values of k < 509202 with no known primes.
- See www.noprimeleftbehind.net, among others.

- Covering congruences are not the only tool.
- When *n* is even we have: • $s_n^{1,m^2}(1) = \frac{m^{2^{n+1}}-1}{m^2-1} = \left(\frac{m^{n+1}-1}{m-1}\right) \left(\frac{m^{n+1}+1}{m+1}\right).$
- When *n* is odd, we have divisibility by $m^2 + 1$ (and hence 2).
- So 1 is always minimal for square bases.

・ 戸 ト ・ ヨ ト ・ ヨ ト ・

- ▶ For other bases up to 10, see John Rickert's site:
- ▶ http://www.rose-hulman.edu/~rickert/Compositeseq

向下 イヨト イヨト

- We ask the question:
- ▶ Is there a k such that $s_n^{d,10}(k)$ is composite for all n and for each of d = 1, 3, 7, and 9?

回 と く ヨ と く ヨ と

- We ask the question:
- Is there a k such that s^{d,10}_n(k) is composite for all n and for each of d = 1, 3, 7, and 9?
- ▶ Yes. *k* = 4942768284976776320.
- A more involved covering congruence argument is involved.
- In fact, we show there are infinitely many.

・ 同 ト ・ ヨ ト ・ ヨ ト

- Find a prime value of $s_n^{3,10}(817)$.
- Find a prime value of $s_n^{9,10}(4420)$.
- Find a prime value of $s_n^{9,10}(7018)$.
- Prove primality of $s_{11330}^{7,10}(480)$ and $s_{28895}^{7,10}(851)$.
- Similar problems for other bases (see Rickert's web site).
- Find a smaller number that works for all digits.