Repeatedly Appending Digits and Only Finding Composites

Jon Grantham
Witold Jarnicki
John Rickert
Stan Wagon

September 2012

Illustrating the Question

- 11 is prime.

Illustrating the Question

- 11 is prime.
- 21 is composite.

Illustrating the Question

- 11 is prime.
- 211 is prime.

Illustrating the Question

- 11 is prime.
- 211 is prime.
- 31 is prime.
- 41 is prime.

Illustrating the Question

- 11 is prime.
- 211 is prime.
- 31 is prime.
- 41 is prime.
- 51 is composite.

Illustrating the Question

- 11 is prime.
- 211 is prime.
- 31 is prime.
- 41 is prime.
- 511 is composite.

Illustrating the Question

- 11 is prime.
- 211 is prime.
- 31 is prime.
- 41 is prime.
- 5111 is composite.

Illustrating the Question

- 11 is prime.
- 211 is prime.
- 31 is prime.
- 41 is prime.
- 51111 is composite.

Illustrating the Question

- 11 is prime.
- 211 is prime.
- 31 is prime.
- 41 is prime.
- 511111 is prime.

Illustrating the Question

- 11 is prime.
- 211 is prime.
- 31 is prime.
- 41 is prime.
- 511111 is prime.
- 61 is prime.
- 71 is prime.
- 811 is prime.
- 911 is prime.
- 101 is prime.

Illustrating the Question

- 11 is prime.
- 211 is prime.
- 31 is prime.
- 41 is prime.
- 511111 is prime.
- 61 is prime.
- 71 is prime.
- 811 is prime.
- 911 is prime.
- 101 is prime.
- 111 is composite.

Illustrating the Question

- 11 is prime.
- 211 is prime.
- 31 is prime.
- 41 is prime.
- 511111 is prime.
- 61 is prime.
- 71 is prime.
- 811 is prime.
- 911 is prime.
- 101 is prime.
- 1111 is composite.

Illustrating the Question

- 11 is prime.
- 211 is prime.
- 31 is prime.
- 41 is prime.
- 511111 is prime.
- 61 is prime.
- 71 is prime.
- 811 is prime.
- 911 is prime.
- 101 is prime.

Illustrating the Question

- 11 is prime.
- 211 is prime.
- 31 is prime.
- 41 is prime.
- 511111 is prime.
- 61 is prime.
- 71 is prime.
- 811 is prime.
- 911 is prime.
- 101 is prime.
- 1111111111111111111 is prime.

Defining the Question

- Let $s_{n}^{d, b}(k)=k b^{n}+d\left(b^{n}-1\right) /(b-1)$.

Defining the Question

- Let $s_{n}^{d, b}(k)=k b^{n}+d\left(b^{n}-1\right) /(b-1)$.
- In other words, the result of appending n copies of the digit d to k in base b.

Defining the Question

- Let $s_{n}^{d, b}(k)=k b^{n}+d\left(b^{n}-1\right) /(b-1)$.
- In other words, the result of appending n copies of the digit d to k in base b.
- In general, for every b, k and d, is there a positive integer n such that $s_{n}^{d, b}(k)$ is prime?

Defining the Question

- Let $s_{n}^{d, b}(k)=k b^{n}+d\left(b^{n}-1\right) /(b-1)$.
- In other words, the result of appending n copies of the digit d to k in base b.
- In general, for every b, k and d, is there a positive integer n such that $s_{n}^{d, b}(k)$ is prime?
- No.

Base 10, Digit 1

- A 2011 article in the American Math. Monthly by Lenny Jones gives the example of 37 , where for all $n>0, s_{n}^{1,10}(37)$ is composite.
- He showed that 37 is minimal by exhibiting values of n such that $s_{n}^{1,10}(k)$ is prime for all $1 \leq k \leq 36$.

Base 10, Digit 1

- A 2011 article in the American Math. Monthly by Lenny Jones gives the example of 37 , where for all $n>0, s_{n}^{1,10}(37)$ is composite.
- He showed that 37 is minimal by exhibiting values of n such that $s_{n}^{1,10}(k)$ is prime for all $1 \leq k \leq 36$.
- What happens for 37 ? When $b=10, d=1$,

Base 10, Digit 1

- A 2011 article in the American Math. Monthly by Lenny Jones gives the example of 37 , where for all $n>0, s_{n}^{1,10}(37)$ is composite.
- He showed that 37 is minimal by exhibiting values of n such that $s_{n}^{1,10}(k)$ is prime for all $1 \leq k \leq 36$.
- What happens for 37 ? When $b=10, d=1$,
- If $n \equiv 0(\bmod 3), s_{n}^{1,10}(k) \equiv k(\bmod 37)$.
- If $n \equiv 2(\bmod 3), s_{n}^{1,10}(k) \equiv k+2(\bmod 3)$.
- If $n \equiv 1(\bmod 6), s_{n}^{1,10}(k) \equiv 3 k+1(\bmod 7)$.
- If $n \equiv 4(\bmod 6), s_{n}^{1,10}(k) \equiv 3 k+6(\bmod 13)$.

Base 10, Digit 1

- A 2011 article in the American Math. Monthly by Lenny Jones gives the example of 37 , where for all $n>0, s_{n}^{1,10}(37)$ is composite.
- He showed that 37 is minimal by exhibiting values of n such that $s_{n}^{1,10}(k)$ is prime for all $1 \leq k \leq 36$.
- What happens for 37 ? When $b=10, d=1$,
- If $n \equiv 0(\bmod 3), s_{n}^{1,10}(k) \equiv k(\bmod 37)$.
- If $n \equiv 2(\bmod 3), s_{n}^{1,10}(k) \equiv k+2(\bmod 3)$.
- If $n \equiv 1(\bmod 6), s_{n}^{1,10}(k) \equiv 3 k+1(\bmod 7)$.
- If $n \equiv 4(\bmod 6), s_{n}^{1,10}(k) \equiv 3 k+6(\bmod 13)$.
- In other words, covering congruences ensure that each $s_{n}^{1,10}(37)$ is divisible by one of these four primes.

Base 10, Digit 3

- Jones finds a covering congruence that shows that $s_{n}^{3,10}(4070)$ is always composite, but does not show that 4070 is minimal.

Base 10, Digit 3

- Jones finds a covering congruence that shows that $s_{n}^{3,10}(4070)$ is always composite, but does not show that 4070 is minimal.
- For every $k<4070$, we exhibit a prime value of $s_{n}^{3,10}(k)$, except when $k=817$.

Base 10, Digit 3

- Jones finds a covering congruence that shows that $s_{n}^{3,10}(4070)$ is always composite, but does not show that 4070 is minimal.
- For every $k<4070$, we exhibit a prime value of $s_{n}^{3,10}(k)$, except when $k=817$.
- The value $s_{n}^{3,10}(817)$ is composite for $1 \leq n \leq 554,789$.
- But factorizations show no apparent obstruction to primality, so we conjecture that 4070 is minimal for digit 3.

Base 10, Digit 7

- Jones finds that appending 7 s to 606,474 produces only composites.

Base 10, Digit 7

- Jones finds that appending 7 s to 606,474 produces only composites.
- We find the same for 891 .

Base 10, Digit 7

- Jones finds that appending 7 s to 606,474 produces only composites.
- We find the same for 891 .
- We find primes for $k<891$

Base 10, Digit 7

- Jones finds that appending 7 s to 606,474 produces only composites.
- We find the same for 891.
- We find primes for $k<891$, except when $k=480$ or $k=851$.

Base 10, Digit 7

- Jones finds that appending 7 s to 606,474 produces only composites.
- We find the same for 891.
- We find primes for $k<891$, except when $k=480$ or $k=851$.
- The values $s_{11330}^{7,10}(480)$ and $s_{28895}^{7,10}(851)$ have each passed 200 strong pseudoprime tests.
- (It took 45 hours to prove the primality of $s_{2904}^{7,10}(9)$.)

Base b, Digit $b-1$

- Jones found 1, 879, 711 .

Base b, Digit $b-1$

- Jones found 1, 879, 711.
- The Riesel Project found 10, 175.

Base b, Digit $b-1$

- Jones found 1, 879, 711.
- The Riesel Project found 10, 175.
- For all smaller k except 4420 and 7018 , there are primes.
- No pseudoprimes because $s_{n}^{b-1, b}(k)=(k+1) \cdot b^{n}-1$.
- Primality proving is "easy" when you can factor $p+1$.
- 4420 and 7018 checked up to $n=750,000$ without finding primes.

Base b, Digit $b-1$

- Jones found 1, 879, 711.
- The Riesel Project found 10, 175.
- For all smaller k except 4420 and 7018 , there are primes.
- No pseudoprimes because $s_{n}^{b-1, b}(k)=(k+1) \cdot b^{n}-1$.
- Primality proving is "easy" when you can factor $p+1$.
- 4420 and 7018 checked up to $n=750,000$ without finding primes.
- Riesel Project primarily concerned with $b=2$.
- It is known $s_{n}^{1,2}(509202)$ is always composite.
- There are 55 values of $k<509202$ with no known primes.
- See www.noprimeleftbehind.net, among others.

Base m^{2} (m odd), Digit 1

- Covering congruences are not the only tool.
- When n is even we have:
$-s_{n}^{1, m^{2}}(1)=\frac{m^{2 n+1}-1}{m^{2}-1}=\left(\frac{m^{n+1}-1}{m-1}\right)\left(\frac{m^{n+1}+1}{m+1}\right)$.
- When n is odd, we have divisibility by $m^{2}+1$ (and hence 2).
- So 1 is always minimal for square bases.

Other Bases, Other Web Sites

- For other bases up to 10 , see John Rickert's site:
- http://www.rose-hulman.edu/~rickert/Compositeseq

Pandigital

- We ask the question:
- Is there a k such that $s_{n}^{d, 10}(k)$ is composite for all n and for each of $d=1,3,7$, and 9 ?

Pandigital

- We ask the question:
- Is there a k such that $s_{n}^{d, 10}(k)$ is composite for all n and for each of $d=1,3,7$, and 9 ?
- Yes. $k=4942768284976776320$.
- A more involved covering congruence argument is involved.
- In fact, we show there are infinitely many.

Open Problems

- Find a prime value of $s_{n}^{3,10}(817)$.
- Find a prime value of $s_{n}^{9,10}(4420)$.
- Find a prime value of $s_{n}^{9,10}(7018)$.
- Prove primality of $s_{11330}^{7,10}(480)$ and $s_{28895}^{7,10}(851)$.
- Similar problems for other bases (see Rickert's web site).
- Find a smaller number that works for all digits.

