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Abstract

This paper proves the existence of infinitely many Perrin pseudoprimes, as con-
jectured by Adams and Shanks in 1982. The theorem proven covers a general
class of pseudoprimes based on recurrence sequences. The result uses ingredients
of the proof of the infinitude of Carmichael numbers, along with zero-density
estimates for Hecke L-functions.
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1. Introduction

The search for fast primality tests has led to the examination of the gener-
alization of the Fermat probable prime test: n is a probable prime if 2n−1 ≡
1 mod n. This test, and its generalizations, requires O(log n) multiplications.
If such a generalization could be found with a finite list of exceptions (pseudo-
primes), we would have a primality test which runs deterministically in time
Õ(log2 n). (Recall that Õ is an extension to the O notation that ignores fac-
tors that are bounded by a fixed power of the logarithm.) By contrast, the
Agrawal-Kayal-Saxena test [2] has recently been improved to Õ(log6 n) [16].
Even non-deterministic variants of the AKS test [4], [5] have running time of
Õ(log4 n); the same can be achieved heuristically for the ECPP test [19].

The Fermat test can be generalized in many ways, which fall into to broad
categories. By thinking of it in terms of the first-order recurrence sequence
defined by an+1 = 2an, a0 = 1, we can generalize to congruences on higher-
order recurrence sequences. This approach is more traditional. Alternatively,
one can think of the Fermat criterion as the extent to which the ring of integers
mod n resembles a finite field. In that way, we can generalize to higher-degree
finite fields. The latter approach was favored in the author’s dissertation [9],
Chapter 4 of which contained an earlier version of the results of this paper.

In a 1982 paper [1], Adams and Shanks introduced a probable primality
test based on third-order recurrence sequences, which they called the Perrin
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test. They asked if there are infinitely Perrin pseudoprimes. They answered
the question, “Almost certainly yes, but we cannot prove it. Almost certainly,
there are infinitely many [Carmichael numbers which are Perrin pseudoprimes],
and yet it has never been proved that there are infinitely many Carmichael
numbers.”

Carmichael numbers are composites which satisfy an−1 ≡ 1 mod n for all
(a, n) = 1. The Carmichael question has been resolved [3]. The techniques
of that proof can be combined with results about Hecke L-functions to show
that there are infinitely many Perrin pseudoprimes. In fact, the main result of
this paper applies to a more general class of pseudoprimes, including Lucas and
Lehmer pseudoprimes.

2. Background

The following is a version of the Perrin test.
Consider sequences An = An(r, s) defined by the following relations: A−1 =

s, A0 = 3, A1 = r, and An = rAn−1−sAn−2+An−3. Let f(x) = x3−rx2+sx−1
be the associated polynomial and ∆ its discriminant. (Perrin’s sequence is
An(0,−1).)

Definition. The signature mod m of an integer n with respect to the sequence
Ak(r, s) is the 6-tuple (A−n−1, A−n, A−n+1, An−1, An, An+1) mod m.

Definitions. An integer n is said to have an S-signature if its signature mod
n is congruent to (A−2, A−1, A0, A0, A1, A2).

An integer n is said to have a Q-signature if its signature mod n is con-
gruent to (A, s,B,B, r, C), where for some integer a with f(a) ≡ 0 mod n,
A ≡ a−2 + 2a, B ≡ −ra2 + (r2 − s)a, and C ≡ a2 + 2a−1.

An integer n is said to have an I-signature if its signature mod n is con-
gruent to (r, s,D′, D, r, s), where D′ +D ≡ rs− 3 mod n and (D′ −D)2 ≡ ∆.

Definition. A Perrin pseudoprime with parameters (r, s) is an odd composite
n such that either

1)
(

∆
n

)
= 1 and n has an S-signature or an I-signature, or

2)
(

∆
n

)
= −1 and n has a Q-signature.

The concept of Perrin pseudoprime can be generalized [10] to that of a
Frobenius pseudoprime. Briefly, a Frobenius pseudoprime with respect to f(x)
is a composite for which Z[x]/(n, f(x)) exhibits properties similar to that of a
true finite field. Most pseudoprime tests based on recurrence sequences can be
treated as special cases.

Definition. Let f(x) ∈ Z[x] be a monic polynomial of degree d with discrim-
inant ∆. An odd composite n > 1 is said to be a Frobenius pseudoprime
with respect to f(x) if (n, f(0)∆) = 1, and it is declared to be a probable prime
by the following algorithm. All computations are done in (Z/nZ)[x].

Factorization Step Let f0(x) = f(x) mod n. For 1 ≤ i ≤ d, let Fi(x) =
gcmd(xn

i − x, fi−1(x)) and fi(x) = fi−1(x)/Fi(x). If any of the gcmds fail to
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exist, declare n to be composite and stop. If fd(x) 6= 1, declare n to be composite
and stop.

Frobenius Step For 2 ≤ i ≤ d, compute Fi(xn) mod Fi(x). If it is nonzero
for some i, declare n to be composite and stop.

Jacobi Step Let S =
∑

2|i deg(Fi(x))/i.
If (−1)S 6=

(
∆
n

)
, declare n to be composite and stop.

If n has not been declared composite, declare n to be a Frobenius probable
prime.

(The gcmd of two polynomials is the greatest common monic divisor; see
[10] for a full treatment.)

Haddad [12] has shown that implementations of a cubic variant of this test
track well with asymptotics.

The following general result gives the infinitude of Perrin pseudoprimes as a
corollary.

Theorem 2.1. Let f(x) ∈ Z[x] be a monic, squarefree polynomial with splitting
field K. There are infinitely many Frobenius pseudoprimes with respect to f(x).
In fact, there are � N c Carmichael-Frobenius numbers with respect to K which
are less than N , for some c = c(K) > 0.

A Carmichael-Frobenius number is a Frobenius pseudoprime with respect to
all polynomials with splitting fieldK (a Carmichael number is thus a Carmichael-
Frobenius number with respect to Q). Proving the theorem for the general case
allows specialization to other cases.

In particular, the results of [10] combined with Theorem 2.1 show that there
are infinitely many Perrin pseudoprimes, if we take f(x) = x3−x−1. Gurak [11]
defines pseudoprimes using congruences for higher-order recurrence sequences.
Szekeres [20] defines pseudoprimes with respect to a polynomial as those for
which every symmetric polynomial of its roots is invariant under the map x 7→
xn. From [10], we have that there are infinitely many pseudoprimes in the senses
of both Gurak and Szekeres.

By Proposition 6.1 of [10], in order to prove Theorem 2.1, it suffices to show
that there are infinitely many Carmichael numbers n, such that for all p|n, f(x)
splits completely mod p. The proof will involve modifying the construction in [3]
to ensure that each of the prime factors of the Carmichael numbers constructed
has this property.

The main result that will be used in this proof is a version of the “prime ideal
theorem for arithmetic progressions” that gives a uniform error term, except for
a possible exceptional progression.

3. Distribution of Primes

Theorems about the distribution of primes in arithmetic progressions are
traditionally proved using Dirichlet characters — homomorphisms from the in-
tegers mod q to the complex roots of unity. (The map is defined to be zero on

3



integers not coprime to q.) Because we want to prove a theorem about primes in
a particular arithmetic progression which split completely, we employ a slightly
different sort of Dirichlet character.

We recall the definitions of [15].

Definitions. Let K be an algebraic number field and OK its ring of integers.
A cycle of K is a formal product m =

∏
pm(p) extending over all of the primes

of K, where the m(p) are nonnegative integers, almost all 0, with m(p) = 0 for
complex p and m(p) ≤ 1 for real p. Let I be the group of fractional ideals of OK .
Let I(m) be the subgroup of I generated by the finite primes p for which m(p) = 0.
Let Pm be the subgroup of I(m) generated by the nonzero ideals of the form OKα,
where α ∈ OK is such that α ≡ 1 mod pm(p) for each finite prime p, and α > 0
under each embedding of K in the field of real numbers corresponding to a real
prime p with m(p) = 1. The norm of a cycle m =

∏
pm(p) is the number

N(m) =
∏
N(p)m(p), where p in the second product ranges over only the finite

primes, and N(p) is the norm of p in K.
A Dirichlet character of K is a pair consisting of a cycle m of K and a

group homomorphism χ : I(m) 7→ C∗ such that Pm is contained in the kernel.
We call m the modulus of χ.

Given two Dirichlet characters χ and χ′ with moduli m and m′, we say that
χ is induced by χ′ if m′(p) ≤ m(p) for all p and χ is the composition of the
inclusion I(m) ⊂ I(m′) with χ′. A Dirichlet character is primitive if it is not
induced by any character other than itself. The modulus of the unique primitive
character inducing a Dirichlet character χ is called the conductor of χ.

For a Dirichlet character χ of K, L(s, χ) is
∑
χ(i)N(i)−s, where the sum is

over the nonzero ideals of the ring of integers of K and Re s > 1. This sum is
absolutely convergent, and L(s, χ′) can be extended to a meromorphic function
on the complex plane. It has a simple pole at s = 1 if χ′ is principal and is
holomorphic otherwise.

Let K be the splitting field of f , n = [K : Q], and d = disc(K). Let χ
be a Dirichlet character mod q (in the traditional sense). We associate to it a
Dirichlet character of K in the following way.

Given an ideal i ⊂ OK , let χ′(i) = χ(N(i)). Then χ′ is an example of a
Dirichlet character of K with conductor dividing N(q).

Let Ψ(x, χ′) =
∑
N(i)<x χ

′(i)Λ(i), where Λ(i) = logN(p) if i = pk for some
prime ideal p, and 0 otherwise. Then

1
φ(q)

∑
χ mod q

χ̄(a)Ψ(x, χ′) =
∑

N(i)<x
N(i)≡a mod q

Λ(i).

We will prove some results about L(s, χ′) that enable us to obtain results
about Ψ(x, χ′), and thus about the distribution of primes that split completely
in K and lie in a particular residue class.

Lemma 3.1. Fix a number field K. Let χ be a real Dirichlet character of
K mod m. Let M = N(m). Let s be a real number in the range 2 > s > 1. If χ
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is principal, then
L′

L
(s, χ) > − 1

s− 1
− c1 log 2M,

for some c1 > 0, depending on K. If χ is non-principal, and if L(s, χ) has some
real zero ρ > 0,

L′

L
(s, χ) >

1
s− ρ

− c1 log 2M,

and
L′

L
(s, χ) > −c1 log 2M,

if it has no real zero.

Proof. Assume χ is non-principal. From equation (5.9) of [17],

L′

L
(s, χ) = B(χ) +

∑
ρ

(
1

s− ρ
+

1
ρ

)
− 1

2
logA(χ)−

γ′χ
γχ

(s),

where the sum is over all the non-trivial zeroes of L(s, χ), A(χ) = dM , d =

disc(K), and γχ(s) =
[
π−

s+1
2 Γ

(
s+1

2

)]b [
π−

s
2 Γ
(
s
2

)]a for nonnegative integers a
and b depending on χ such that a + b = n = [K : Q]. The exact dependence,
described in [17], is irrelevant here.

The logA(χ) term can be bounded because logA(χ) = log dM � log 2M .
B(χ) is defined implicitly in [17]. By Lemma 5.1 of that paper, we have

B(χ) = −Re
∑
ρ

1
ρ
.

We have from Lemma 5.3 of [17] that

|
γ′χ
γχ

(s)| � n log(s+ 2),

where the implied constant is absolute.
Thus L′

L (s, χ) >
∑
ρ Re 1

s−ρ − c1 log 2M , for some c1 > 0. We have that
Re 1

s−ρ = s−Re ρ
|s−ρ|2 > 0, so we can omit any part of the sum. We omit anything

but one possible real zero.
Thus

L′

L
(s, χ) >

1
s− ρ

− c1 log 2M,

if L(s, χ) has a real zero ρ, and

L′

L
(s, χ) > −c1 log 2M,

independent of the existence of real zeros.
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Now assume χ is principal. From (5.9) of [17]

L′

L
(s, χ) =

∑
ρ

(
1

s− ρ
+

1
ρ

)
− 1
s
− 1
s− 1

− 1
2

logA(χ) +
γ′χ
γχ

(s).

By the same arguments as in the non-principal case (and the fact that 1
s < 1),

we have that
L′

L
(s, χ) > − 1

s− 1
− c1 log 2M.

The following version of the Landau-Page Lemma for Dirichlet L-functions
over a number field shows that there is at most one “Siegel zero” for characters
of a bounded modulus.

Lemma 3.2. Given a number field K, there is a computable constant c2 > 0,
depending on K, such that for all T ≥ 2, there is at most one primitive character
χ1 with modulus m, 1 ≤ N(m) < T for which L(s, χ1) has a zero β1 + iγ1

satisfying β1 ≥ 1− c2/ log T and |γ1| < T .

Proof. We follow the proof in [6], p. 94.
Lemma 3.5 of [15] allows us to consider only real zeros of real non-principal

characters.
Let χ1 and χ2 be primitive characters mod m1 and m2, respectively, where

N(m1) and N(m2) are at most T .
Consider the expression

−L
′

L
(s, χ0)− L′

L
(s, χ1)− L′

L
(s, χ2)− L′

L
(s, χ1χ2),

where χ0 is the principal character modulo the gcd of m1 and m2. (We define
gcd(

∏
pm1(p),

∏
pm2(p)) =

∏
pmin(m1(p),m2(p)).) This expression is equal to∑

Λ(i)(χ0(i) + χ1(i))(χ0(i) + χ2(i))N(i)−s > 0, (1)

for Re s > 1.
Assume that L(s, χ1) and L(s, χ2) have real zeros, β1 and β2 respectively.

Applying the previous lemma to (1) for real s > 1,

− 1
s− β1

− 1
s− β2

+
1

s− 1
+ c3 log T > 0,

for some c3 > 0 depending on K, but not T . Rearranging,

1
s− β1

+
1

s− β2
<

1
s− 1

+ c3 log T.

Let c2 = 1
6c3

and assume that each βi ≥ 1− c2
log T .

Taking s = 1 + 3c2/ log T gives us 1
s−βi ≥

log T
4c2

and 1
s−1 = log T

3c2
.
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We now have that
log T
2c2

<
log T
3c2

+ c3 log T.

Simplifying, 1
6c2

< c3. Substituting the value of c2 gives the desired contradic-
tion.

For each Dirichlet character χ of a field K and real numbers σ, T , in the
ranges 1

2 ≤ σ ≤ 1, T ≥ 0, let N(σ, T, χ) be the number of zeros s = β + iγ of
the Dirichlet L-function L(s, χ) inside the box σ < β < 1 and |γ| < T . Let A

be the set of real numbers A > 2 for which there exists a number CA ≥ 1, such
that for all σ ≥ 1− 1

A and T ≥ 1,

N(σ, T,m) :=
∑

χ mod m

N(σ, T, χ) ≤ CA(N(m)Tn)A(1−σ),

for all moduli m.
Hilano [14] has shown that every A ≥ 2890 is in A. The existence of such

an A was first shown by Fogels [7].

Theorem 3.3. Let K be a number field. For any given ε > 0, there exist num-
bers xε, ηε > 0, and an integer qε(x), all depending on K, such that whenever
x ≥ xε and x1/2 < y < x,∣∣∣∣∣∣∣∣

∑
N(i)<y

N(i)≡a mod q

Λ(i)− y

φ(q)

∣∣∣∣∣∣∣∣ ≤ ε
y

φ(q)

for all integers q not divisible by qε(x), with (a, q) = 1 and q in the range
1 ≤ q ≤ xηε . Furthermore qε(x) > log x.

Proof. Let ν = 3 log(36CA/ε). Let ηε = min( 1
8An2 ,

c2
nν ). We can require xε >

max(e4Aν/ηε , 18(CA/ε)2/ηε).
We can deduce the following explicit formula from [15], proof of Theorem

3.1: (equations 3.2, 3.3 and the equation following the “Hence” on p. 493).

∑
N(a)<y

N(a)≡a mod q

Λ(a) =
y

φ(q)
− 1
φ(q)

∑
χ mod q

χ̄(a)
∑

L(β+iγ,χ)=0
β≥1/2,|γ|≤T

yβ+iγ

β + iγ
+

O
(
n log y + n

y log y(log y + log dq + log T )
T

+

n log dq + ny
1
2 log y(log q + log y)

)
.

(2)

We have that ηε < 1/16 (since by definition, A > 2), so log q < log y and
q < y1/3. We take T = x, so y < T < y2.
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The error term in (2) is

O
(
ny1/2(log2 y + log y log d) + n log d

)
.

Because d, n are fixed, the error is O(y1/2 log2 y) = O(y
6/7

q ), which is less than
ε
3

y
φ(q) for y sufficiently large.

The double sum may be bounded by noting that |yβ+iγ | = yβ , and β+ iγ ≥√
1/4 + γ2 ≥ (1 + |γ|)/3.
Thus∣∣∣∣∣∣∣∣

∑
N(a)<y

N(a)≡1 mod q

Λ(a)− y

φ(q)

∣∣∣∣∣∣∣∣ ≤
3

φ(q)

∑
χ mod q

∑
L(β+iγ,χ)=0
β≥1/2,|γ|≤x

yβ

1 + |γ|
+
ε

3
y

φ(q)
. (3)

Write
∑α
σ for a sum over all zeros of β+ iγ of L(s, χ) and over all characters

χ mod q where σ ≤ β < α and |γ| < x. (Each β+iγ is counted with multiplicity
equal to the number of those L-functions for which it is a zero.) To estimate the
double sum in (3) we use the upper bounds yβ ≤ y1−1/(2An) for β ≤ 1−1/(2An),
and yβ ≤ y for τ ≤ β ≤ 1, where τ = 1− ν/ log x. In the range 1− 1/(2An) ≤
β ≤ τ , we use the identity yβ = y1−1/(2An) + log y

∫ β
1−1/(2An)

yσdσ.
Therefore, the double sum in (3) is at most

1−1/(2An)∑
1/2

y1−1/(2An)

1 + |γ|
+ log y

τ∑
1−1/(2An)

1
1 + |γ|

∫ β

1−1/(2An)

yσdσ + y

1∑
τ

1
1 + |γ|

≤ y1−1/(2An)
1∑

1/2

1
1 + |γ|

+ log y
∫ τ

1−1/(2An)

yσ

(
1∑
σ

1
1 + |γ|

)
dσ

+ y

1∑
τ

1
1 + |γ|

.

(4)

For σ ≥ 1/2, we have, by partial summation,

1∑
σ

1
1 + |γ|

≤ N(σ, 2, q) +
N(σ, x, q)

x
+
∫ x

2

N(σ, t, q)
t2

dt.

By [13], N(1/2, t, q) < c4nq
nt log qt. For t in the range 2 ≤ t ≤ x, we have

N(1/2, t, q)/t ≤ c4nqn log qx.
Applying this,

1∑
1/2

y1− 1
2An

1 + |γ|
≤ 2c4nqny1− 1

2An log qx
(

2 +
∫ x

2

dt

t

)
≤ 5c4nqny1− 1

2An log2 qx.
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Because we insist that ηε < 1
8An2 , the first term in (4) is O(y1−1/(3An)), which

is < ε
18y for y sufficiently large.

If σ ≥ 1 − 1/(2An), then An(1 − σ) ≤ 1/2, so that for any t in the range
1 ≤ t ≤ x, Theorem 9 of [14] shows that N(σ, t, d) ≤ CAq

An(1−σ)t1/2. We
deduce that

1∑
σ

1
1 + |γ|

≤ CAqAn(1−σ)

(
3 +

∫ x

2

dt

t3/2

)
≤ 5CAqAn(1−σ).

Using this bound, the middle term in (4) is

≤ 5CAqAn log y
∫ τ

1−1/(2An)

(
y

qAn

)σ
dσ

≤ 5CAqAn
log y

log(y/qAn)
y

qAn

(
y

qAn

)−(1−τ)

.

(5)

We have that qAn < xAnη < y1/3, so log y
log(y/qAn)

< 3/2. Also,(
y

qAn

)−(1−τ)

=
(

y

qAn

)−ν/ log x

< e−
2
3 log yν/ log x < e

1
3ν .

Thus the middle term in (4) is ≤ 4CAye−
1
3ν , which, by the way we chose ν,

is ≤ ε
9y.

We apply Lemma 2.2 with T = xnηε and call the exceptional modulus qε(x).
Then for all moduli less than xηε and not divisible by qε(x), the L-function has
no zeros β + iγ with β ≥ τ = 1− ν/ log x and |γ| < xnηε .

So the third term in (4) is

y

1∑
τ

1
1 + |γ|

≤ yN(τ, x, q)
xnηε

≤ CAy(qnxn)A(1−τ)/xnηε < CAyx
2Anν/ log x/xnηε .

This is less than CAyx
−ηε/2, by our choice of x. Also, since x > xε, by our

choice of x, this is less than CAy(18CA/ε)2/ηε
−ηε/2 = εy/18. Putting these

bounds together, we get the desired theorem.

Theorem 2.1 of [3] shows, essentially, that the number of primes in an arith-
metic progression less than x cannot be too far away from what you expect.
Furthermore, it shows this for “most” moduli up to x

5
12 . Our replacement is

the following

Theorem 3.4. Let f(t) ∈ Z[t] be a monic polynomial with splitting field K,
[K : Q] = n. Then we have real numbers x1/3, η1/3 > 0 and an integer q1/3(x) >
log x, depending on K as described in Theorem 3.3, such that the following
statement holds. If q ≤ xη1/3 , gcd(a, q) = 1, q1/3(x) - q, x ≥ x1/3 and x1/2 <
y < x, then the number of primes p < y that are a mod q and such that f(t)
splits into linear factors mod p (equivalently, p splits completely in K) is at least

1
2φ(q)nπ(x).
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Proof. The previous theorem gives that∑
N(a)<y

N(a)≡a mod q

Λ(a) ≥ (2/3)y
φ(q)

.

The sum contains two types of summands not arising from primes. The
first, prime ideal powers, can be dispensed of in the usual way, by noting that
their contribution to the sum is O(y1/2). The second type is primes that do
not split completely, for which we have N(p) = pk, for k > 1, so they also con-
tribute O(y1/2). We pass to the estimate on the number of primes by standard
techniques ([6], p. 112).

Henceforth, let η = η1/3 and q(x) = q1/3(x).

4. Prachar’s Theorem

We use the following variant of Prachar’s Theorem (c.f. Theorem 3.1 of [3]).

Theorem 4.1. If L is a squarefree number not divisible by any prime exceeding
x

1−η
2 and for which

∑
prime q|L

1
q ≤

1−η
32n , then there is a positive integer k ≤

x1−η with (k, L) = 1 such that

#{d|L : dk + 1 ≤ x, dk + 1 is prime, splits fully in K} ≥ #{d|L : 1 ≤ d ≤ xη}
8n log x

.

Proof. Let πK(x; q) denote the number of primes less than x that are 1 mod q
and split completely in K.

From Theorem 3.4, we see that for each divisor d of L with 1 ≤ d ≤ xη and
(d, q(x)) = 1,

πK(dx1−η; d) ≥ π(dx1−η)
2nφ(d)

≥ dx1−η

2nφ(d) log x
.

Because any prime factor q of L is at most x
1−η
2 , we can use Montgomery

and Vaughan’s explicit version of the Brun-Titchmarsh theorem [18] to get

πK(dx1−η; dq) ≤ π(dx1−η; dq, 1) ≤ 8
q(1− η)

dx1−η

φ(d) log x
.

So the number of primes p ≤ dx1−η with p ≡ 1 mod d and (p−1
d , L) = 1 that

split completely is at least

πK(dx1−η; d)−
∑

prime q|L

πK(dx1−η; dq)

≥

 1
2n
− 8

1− η
∑

prime q|L

1
q

 dx1−η

φ(d) log x
≥ x1−η

4n log x
,
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for any divisor not divisible by q(x). But at least half of the divisors of L will
not be divisible by q(x).

Thus we have at least

x1−η

8n log x
#{d|L : 1 ≤ d ≤ xη}

pairs (p, d) where p ≤ d1−η is prime, p ≡ 1 mod d, p splits completely in K,
(p−1
d , L) = 1, d|L and 1 ≤ d ≤ xη. Each such pair (p, d) corresponds to an

integer p−1
d ≤ x1−η which is coprime to L, so there is at least one integer

k ≤ x1−η with (k, L) = 1 such that k has at least

1
8n log x

#{d|L : 1 ≤ d ≤ xη}

representations as p−1
d with (p, d) as above. Thus for this integer k we have

#{d|L : dk + 1 ≤ x, dk + 1 prime, split completely in K} ≥ 1
8n log x#{d|L : 1 ≤

d ≤ xη}.

5. Infinitely Many Frobenius Pseudoprimes

We recall the results from Section 1 of [3].

Theorem 5.1 (Theorem 1.1 of [3]). Let n(G) be the length of the longest se-
quence of (not necessarily distinct) elements of G for which no non-empty sub-
sequence has product the identity. If G is a finite abelian group and m is the
maximal order of an element in G, then n(G) < m(1 + log ( |G|m )).

This theorem is due to van Emde Boas and Kruyswijk, and to Meshulam.

Proposition 5.2 (Proposition 1.2 of [3]). Let G be a finite abelian group, and
let r > t > n = n(G) be integers. Then any sequence of r elements of G contains

at least

(
r
t

)(
r
n

) distinct subsequences of length at most t and at least t − n, whose

product is the identity.

We now prove our main result, which was stated earlier as Theorem 2.1.

Theorem 5.3. Let K be a number field, and let η be the positive real num-
ber depending on K defined in Theorem 3.3. For any ε > 0, the number of
Carmichael-Frobenius numbers less than x, with respect to a number field K, is
at least xη/3−ε, for sufficiently large x, depending on ε and K.

Proof. Let Q be the set of primes q ∈ ( y3

log y , y
3] for which q − 1 is free of prime

factors exceeding y. Friedlander [8] has proven that there is a constant C > 0
for which

|Q| ≥ C y3

log y

11



for all sufficiently large y. Let L be the product of the primes q ∈ Q; then

logL ≤ |Q| log (y3) ≤ π(y3) log (y3) ≤ 2y3,

for all large y. Carmichael’s lambda function, λ(L) is the exponent of the group
of integers modulo L. Because L is squarefree, it is the least common multiple
of {q − 1} for those primes q that divide L. Because each such q − 1 is free
of prime factors exceeding y, we know that if the prime power pa divides λ(L)
then p ≤ y and pa ≤ y3. We let pap be the largest power of p with pap ≤ y3,
then

λ(L) ≤
∏
p≤y

pap ≤
∏
p≤y

y3 = y3π(y) ≤ e6y

for all large y.
Let G be the group (Z/LZ)∗. From Theorem 5.1 and the above equations,

n(G) < λ(L)
(

1 + log
φ(L)
λ(L)

)
≤ λ(L)(1 + logL) ≤ e9y

for all large y.
Recall that η < 1/16. We can choose y large enough so that

∑
1
q ≤

1−η
32n as

needed to apply Theorem 4.1. Let δ = 3ε
8nη , and let x = ey

1+δ
. Then, for y large

enough, there is an integer k coprime to L for which the set P of primes p ≤ x
with p = dk + 1 for some divisor d of L, and that split in K, satisfies

|P| ≥ #{d|L : 1 ≤ d ≤ xη}
8n log x

.

The product of any

u :=
[

log (xη)
log y3

]
=
[
η log x
3 log y

]
distinct prime factors of L is a divisor d of L with d ≤ xη. We deduce from
above that

#{d|L : 1 ≤ d ≤ xη} ≥
(
ω(L)
u

)
≥
(
ω(L)
u

)u
≥
(

Cy3

η log x

)u
=
(
C

η
y2−δ

)u
.

We notice that (2−δ)η
3 = 2η

3 −
ε

8n . So for all sufficiently large values of y,

|P| ≥

(
C
η y

2−δ
)u

8n log x
≥ x

2η
3 −

ε
3 .

Take P′ = P\Q. Because |Q| ≤ y3, we have that |P′| ≥ x
2η
3 −

ε
2 , for all

sufficiently large values of y.
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We may view P′ as a subset of the group G = (Z/LZ)∗ by considering the
residue class of each p ∈ P′ mod L. If S is a subset of P′ that contains more
than one element, and if ∏

(S) :=
∏
p∈S

p ≡ 1 mod L,

then
∏

(S) is congruent to 1 mod kL and is a Carmichael number by Korselt’s
criterion. Because all of its prime factors split completely in K, it is a Frobenius
pseudoprime.

Let t = ey
1+δ
2 . Then, by Proposition 5.2, we see that the number of Frobe-

nius pseudoprimes of the form
∏

(S), where S ⊂ P′ and |S| ≤ t, is at least(|P′|
[t]

)( |P′|
n(G)

) ≥
(
|P′|
[t]

)[t]

|P′|n(G)
≥
(
x

2η
3 −

ε
2

)[t]−n(G)

[t]−[t] ≥ xt(
2η
3 −ε)

for all sufficiently large values of y. We note that we have formed each Frobenius
pseudoprime

∏
(P) ≤ xt. Thus for X = xt we have the number of Frobenius

pseudoprimes ≤ x is at least X
2η
3 −ε for all sufficiently large values of X. Because

y can be uniquely determined from X, the theorem is proven.

References

[1] W. W. Adams and D. Shanks. Strong primality tests that are not sufficient.
Math. Comp., 39:255–300, 1982.

[2] Manindra Agrawal, Neeraj Kayal, and Nitin Saxena. PRIMES is in P.
Ann. of Math., 160:781–793, 2004.

[3] W. R. Alford, Andrew Granville, and Carl Pomerance. There are infinitely
many carmichael numbers. Annals of Mathematics, 140:703–722, 1994.

[4] Roberto M. Avanzi and Preda Mihăilescu. Effi-
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