Collecting primes with $p^{2}-1827$-smooth OR

Reduced sets for likely solutions to the $\mathbf{\$ 6 2 0}$ problem

Jon Grantham Institute for Defense Analyses Center for Computing Sciences

In memory of my friend Red Alford

Probable Primes and Pseudoprimes

- Fermat's Little Theorem:
- If p is prime, then $a^{p} \equiv a$ mod p, for all integers a.
- The converse doesn't always follow...
- $2^{341} \equiv 2 \bmod 341$.
- A probable prime to the base a is a number n such that $a^{n} \equiv a \bmod n$.
- A pseudoprime to the base a is a composite probable prime to the base a.
- (Sometimes called a Fermat pseudoprime.)
- There aren't that many pseudoprimes (compared to primes).

Fibonacci pseudoprimes

- A Fibonacci pseudoprime is a composite n such that $n \left\lvert\, F_{n-\left(\frac{n}{5}\right)}\right.$, where F_{k} is the $k^{t h}$ Fibonacci number.
- (Generalizes to Lucas sequences and Lucas pseudoprimes.)
- Pomerance, Selfridge and Wagstaff offer \$620 for a base-2 pseudoprime that is also a Lucas pseudoprime and is 2 or $3 \bmod 5$. (Or a proof that none exists.)

Carl's Heuristic

- In 1984, Carl Pomerance gave a heuristic (a modification of Erdos' heuristic for Carmichael numbers) that said that there should be infinitely many ($\gg x^{1-\epsilon}$) solutions to the $\$ 620$ problem.
- The paper is available at
- http://www.pseudoprime.com/pseudo.html
- We choose a set Q of primes less than a bound B. Let Q_{1} be the subset of Q consisting of primes congruent to $1 \bmod 4$ (excepting 5). Let Q_{3} be the subset of Q consisting of primes congruent to $-1 \bmod 4$. Then we search for primes $p \equiv 3,27 \bmod 40$ with $(p-1) / 2$ squarefree and consisting only of primes in Q_{1} and $(p+1) / 4$ squarefree and consisting only of primes in Q_{3}.
- Call this set of primes P.

Carl's Heuristic, cont.

- Let $M_{1}=\prod_{q \in Q_{1}} q$, and $M_{3}=\prod_{q \in Q_{3}} q$.
- Let P^{\prime} be a subset of P, and let $n=\prod_{p \in P^{\prime}} p$. Assume that n has an odd number of prime factors, and further that $n \equiv 1 \bmod M_{1}$ and $n \equiv-1 \bmod 4 M_{3}$. Then $n \equiv 2$ or $3 \bmod 5, n$ is a (strong) Fermat pseudoprime to the base 2 and m is a Fibonacci pseudoprime. (In fact, n is also a Carmichael number.)
- Why is n a Fermat pseudoprime? For each $p \mid n p \in P$, so we have $p-1 \mid 2 M_{1}$. Further, $2 M_{1} \mid n-1$, by the assumptions on n. Therefore, $p-1 \mid n-1$. Therefore $2^{n-1} \equiv 2^{(p-1) \frac{n-1}{p-1}} \equiv 1$.
- n is a Fibonacci pseudoprime by a similar argument.

Why does n exist?

- We assume that all possible $n s$ are randomly distributed $\bmod 4 M_{1} M_{3}$. (This is not accurate, but it is probably pessimistic.) If $2^{|P|}>\varphi\left(4 M_{1} M_{3}\right)$, then there is likely an n in the appropriate congruence class. If
$2^{|P|}>2 \varphi\left(4 M_{1} M_{3}\right)$, there is likely such an n with an odd number of prime factors.
- We call such a set a "likely solution".
- In the mid-1990s, Red Alford and I presented at SERMON a set P with cardinality 2030, where $2 \varphi\left(4 M_{1} M_{3}\right) \approx 2^{1812}$.

How to find n ?

- Heuristics say 2^{218} solutions! How to find 1 ?
- Trim P to minimum possible set. $(|P|=1812$.)
- Naive way: form all possible subproducts; check if they win. Work: $2^{|P|}$.
- Less naive way: form all possible subproducts of odd cardinality. Work: $2^{|P|-1}$.
- Better way: categorize P into equally sized subsets P_{1} and P_{2}. Compute all possible subproducts of P_{1} mod $4 M_{1} M_{3}$. Compute all possible subproducts of P_{2}. Sort the two lists together in a clever way; if you get any matches, you win! Work: $2^{|P| / 2}$.
- Practical way...Work: 2^{40}. (Unfortunately not known to exist.)

Relax!

- Carl's conditions were very strict. You can relax a number of them and still get a solution to the $\$ 620$ problem (though perhaps not a Carmichael number). For example, you need $\operatorname{ord}_{2}(p) \mid 2 M_{1}$, not necessarily $p-1 \mid 2 M_{1}$ (though the latter implies the former).
- Similarly, you can look at the "Fibonacci order" instead of $p+1$.
- Also, if you look at primes that are $3 \bmod 4$ instead of $3 \bmod 8$, you lose the strong pseudoprime, but you get more primes to choose from. (You have to add powers of 2 to M_{1}.)
- You don't need $\left(p^{2}-1\right) / 8$ squarefree.
- You don't need to categorize primes by their value $\bmod 4$; you can be smarter.

Chen/Greene

- In a 2003 paper, Chen and Greene develop each of these ideas.
- They find a likely set with 1241 elements.
- They use 70 primes in each of M_{1} and M_{3}. (Red and I used 100 each.)
- They carefully assign primes to M_{1} and M_{3} to balance them out.
- This paper renewed my interest in reducing the size of likely sets.

Don't be smart, be dumb!

- The general method for finding primes is constructing $p-1$ to be smooth, then testing p for primality and $\operatorname{ord}_{f}(p)$ for smoothness.
- (Alternatively, construct $p+1 \ldots$)
- Cycle through k-subsets of Q_{1} and/or Q_{3}.
- It's almost as cheap to test $p+1$ for $M_{1} M_{3}$-smoothness as M_{3}-smoothness.
- Not horrifically more expensive to cycle through k-subsets of Q than of Q_{1}.
- Let Q_{1} and Q_{3} choose themselves.

Method to the madness

- Construct k-subsets of Q with $B=811$ for small k.
- Randomly separate Q into Q_{1} and Q_{3}. Repeat. Keep highest cardinality set.
- Try switching primes back and forth between Q_{1} and $Q_{3} \ldots$ up to 9 primes at a time. See if it improves.
- Construct k-subsets of Q_{1} and Q_{3} for slightly larger k.
- Try switching primes again.
- Don't have enough primes. Bump B to 827 ; search for primes p where $p+1$ is a multiple of 821,823 , or 827 .
- Find likely set of size 1182. (71 primes in $Q_{1} ; 72$ in Q_{2}.)
- Celebrate! Write talk.
- Re-do more systematically. Write paper as if you knew the correct bound to begin with. (To do.)

On the horizon

- Generate more primes?
- (Increase size of k in both steps.)
- (Include primes > 827 as long as they don't divide the order.)
- Search smarter?
- One idea: let the primes be nodes on a graph. Connect two primes if they are "compatible".
- $\left(\operatorname{gcd}\left(\operatorname{ord}_{2}\left(q_{1}\right)\right.\right.$, ord $\left._{f}\left(q_{2}\right)\right) \mid 2$, etc. $)$
- Find maximal complete subgraph.
- This is probably NP-complete...
- Other types (Perrin Q-pseudoprimes)

