# Collecting primes with $p^{2}-1$ 1163-smooth OR <br> Reduced sets for likely solutions to the $\$ 620$ problem 

Jon Grantham

## April 2013

## As you will recall me saying 8 years ago...

- At SERMON 2005, I gave a talk entitled "Collecting primes with $p^{2}-1827$-smooth or Reduced sets for likely solutions to the $\$ 620$ problem."


## As you will recall me saying 8 years ago...

- At SERMON 2005, I gave a talk entitled "Collecting primes with $p^{2}-1827$-smooth or Reduced sets for likely solutions to the $\$ 620$ problem."
- http://www.pseudoprime.com/sermon05.pdf, if you want to read that talk instead of listening to this one.


## As you will recall me saying 8 years ago...

- At SERMON 2005, I gave a talk entitled "Collecting primes with $p^{2}-1827$-smooth or Reduced sets for likely solutions to the $\$ 620$ problem."
- http://www.pseudoprime.com/sermon05.pdf, if you want to read that talk instead of listening to this one.
- Keen observers will note this talk has the same title, but with 1163 instead of 827.
- The first part of this talk will be a summary of that talk.


## Pseudoprimes

- For all odd primes $p$, Fermat's Little Theorem tells us that $2^{p-1} \equiv 1(\bmod p)$.
- An odd composite with this property is called a Fermat pseudoprime.


## Pseudoprimes

- For all odd primes $p$, Fermat's Little Theorem tells us that $2^{p-1} \equiv 1(\bmod p)$.
- An odd composite with this property is called a Fermat pseudoprime.
- For all primes $p \neq 5, p$ divides $F_{p-1}$ if $p \equiv \pm 1(\bmod 5)$, otherwise $p \mid F_{p+1}$.
- ( $F_{k}$ is the $k$ th Fibonacci number.)
- A composite satisfying this property is a Fibonacci pseudoprime.


## Pseudoprimes

- For all odd primes $p$, Fermat's Little Theorem tells us that $2^{p-1} \equiv 1(\bmod p)$.
- An odd composite with this property is called a Fermat pseudoprime.
- For all primes $p \neq 5, p$ divides $F_{p-1}$ if $p \equiv \pm 1(\bmod 5)$, otherwise $p \mid F_{p+1}$.
- ( $F_{k}$ is the $k$ th Fibonacci number.)
- A composite satisfying this property is a Fibonacci pseudoprime.
- In a 1980 paper, Pomerance, Selfridge and Wagstaff asked whether there was a number $n \equiv 2,3(\bmod 5)$ that was both types of pseudoprimes.
- They later offered $\$ 620$ for such a number, or a proof that none exists.


## Pomerance's Heuristic

- In 1984, Pomerance gave a heuristic as to why infinitely many such numbers should exist.


## Pomerance's Heuristic

- In 1984, Pomerance gave a heuristic as to why infinitely many such numbers should exist.
- http://www.pseudoprime.com/dopo.pdf, if you want to read it instead of listening to me.


## Pomerance's Heuristic

- In 1984, Pomerance gave a heuristic as to why infinitely many such numbers should exist.
- http://www.pseudoprime.com/dopo.pdf, if you want to read it instead of listening to me.
- It's a modification of the Erdös heuristic on Carmichael numbers.
- Let $Q_{1}$ be the set of primes $1(\bmod 4)($ except 5$)$ up to a bound $B$. Similarly, $Q_{3}$.
- Look for primes $p \equiv 3,27(\bmod 40)$ with $p-12 Q_{1}$-smooth and $p+14 Q_{3}$-smooth.
- Let $P$ be a set of those primes.


## Slide copied verbatim from the '05 talk (except for title)

- Let $M_{1}=\prod_{q \in Q_{1}} q$, and $M_{3}=\prod_{q \in Q_{3}} q$.
- Let $P^{\prime}$ be a subset of $P$, and let $n=\prod_{p \in P^{\prime}} p$. Assume that $n$ has an odd number of prime factors, and further that $n \equiv 1 \bmod M_{1}$ and $n \equiv-1 \bmod 4 M_{3}$. Then $n \equiv 2$ or $3 \bmod 5, n$ is a (strong) Fermat pseudoprime to the base 2 and $m$ is a Fibonacci pseudoprime. (In fact, $n$ is also a Carmichael number.)
- Why is $n$ a Fermat pseudoprime? For each $p \mid n p \in P$, so we have $p-1 \mid 2 M_{1}$. Further, $2 M_{1} \mid n-1$, by the assumptions on $n$. Therefore, $p-1 \mid n-1$. Therefore $2^{n-1} \equiv 2^{(p-1) \frac{n-1}{p-1}} \equiv 1$.
- $n$ is a Fibonacci pseudoprime by a similar argument.


## Likely sets

- If $2^{|P|}>\varphi\left(4 M_{1} M_{3}\right)$, heuristics say likely solution.
- In mid-1990s at SERMON, Alford and I and presented a set $|P|=2030, \varphi\left(4 M_{1} M_{3}\right) \approx 2^{1812}$.
- So a "likely set" of size 1812.
- Best known algorithm for finding a solution square-root, so $2^{906}$ work.


## Chen/Greene

- In a 2003 paper, Chen/Greene find a likely set of size 1241.
- Key ingredients:
- Require $\operatorname{ord}_{2}(p) \mid 2 M_{1}$, rather than $p-1 \mid 2 M_{1}$.
- Similarly with "Fibonacci order".
- Allow prime powers in $Q_{1}$ and $Q_{3}$.
- Drop congruence restrictions (lose strong pseudoprime).
- Carefully assign small primes to $Q_{1}$ and $Q_{3}$ for "balance".


## Idea of my 2005 talk

- Generate primes $p$ with $p-1$ and $p+1827$-smooth.
- Assign primes randomly to $Q_{1}$ and $Q_{3}$.
- Repeat, choose $Q_{1}$ and $Q_{3}$ with largest number of primes.
- Try small alterations to $Q_{1}$ and $Q_{3}$ to see if they help.
- Generate "likely set" of size 1182.


## Ideas of my 2013 talk

- Study effect of $\operatorname{ord}_{2}(p)$ and Fibonacci order.
- (Chen/Greene estimates seem to imply 1510-1570 without that.)
- Answer question posed in 2005 talk about Perrin Q-pseudoprimes.
- Perrin's sequence has discriminant -23 (c.f. 5 for Fibonnaci.)
- Q-pseudoprimes generated by virtually identical heuristic.
- How much does it hurt banning 5 from dividing $p^{2}-1$ ?
- Write better code, hope that helps.


## Method

- Find all primes $p$ with $p^{2}-11163$-smooth with at most 7 primes dividing $p-1$ (some arbitrary limit on prime powers).
- Needed to increase from 827 partially to get solution without $\operatorname{ord}_{2}(p)$ or Fibonacci order.
- (See, that's why the title of the talk changed.)


## Method

- Find all primes $p$ with $p^{2}-11163$-smooth with at most 7 primes dividing $p-1$ (some arbitrary limit on prime powers).
- Needed to increase from 827 partially to get solution without $\operatorname{ord}_{2}(p)$ or Fibonacci order.
- (See, that's why the title of the talk changed.)
- Look at many random selections of $Q_{1}$ and $Q_{3}$.
- Try alterations of up to 2 primes at a time to see if it improves.


## Method

- Find all primes $p$ with $p^{2}-11163$-smooth with at most 7 primes dividing $p-1$ (some arbitrary limit on prime powers).
- Needed to increase from 827 partially to get solution without $\operatorname{ord}_{2}(p)$ or Fibonacci order.
- (See, that's why the title of the talk changed.)
- Look at many random selections of $Q_{1}$ and $Q_{3}$.
- Try alterations of up to 2 primes at a time to see if it improves.
- It always does, at first.
- Use hill-climbing to get local maximum.


## Method

- Find all primes $p$ with $p^{2}-11163$-smooth with at most 7 primes dividing $p-1$ (some arbitrary limit on prime powers).
- Needed to increase from 827 partially to get solution without $\operatorname{ord}_{2}(p)$ or Fibonacci order.
- (See, that's why the title of the talk changed.)
- Look at many random selections of $Q_{1}$ and $Q_{3}$.
- Try alterations of up to 2 primes at a time to see if it improves.
- It always does, at first.
- Use hill-climbing to get local maximum.
- Throw away least-used prime (not always 1163!)
- Repeat as long as you keep likely set.


## Results

- Solely looking at $p-1$ and $p+1$ :


## Results

- Solely looking at $p-1$ and $p+1$ :Minimal set of size 1406 .
- \$620 minimal set:


## Results

- Solely looking at $p-1$ and $p+1$ :Minimal set of size 1406 .
- \$620 minimal set:1148.


## Results

- Solely looking at $p-1$ and $p+1$ :Minimal set of size 1406 .
- \$620 minimal set:1148.
- It turns out that the set of smallest primes is not optimal!


## Results

- Solely looking at $p-1$ and $p+1$ :Minimal set of size 1406 .
- \$620 minimal set:1148.
- It turns out that the set of smallest primes is not optimal!
- Perrin Q-pseudoprime (only $p^{2}-1$ ):


## Results

- Solely looking at $p-1$ and $p+1$ :Minimal set of size 1406 .
- \$620 minimal set:1148.
- It turns out that the set of smallest primes is not optimal!
- Perrin Q-pseudoprime (only $p^{2}-1$ ):1186.


## Results

- Solely looking at $p-1$ and $p+1$ :Minimal set of size 1406 .
- \$620 minimal set:1148.
- It turns out that the set of smallest primes is not optimal!
- Perrin Q-pseudoprime (only $p^{2}-1$ ):1186.
- So the 5 does make a significant difference.


## Results

- Solely looking at $p-1$ and $p+1$ :Minimal set of size 1406 .
- \$620 minimal set:1148.
- It turns out that the set of smallest primes is not optimal!
- Perrin Q-pseudoprime (only $p^{2}-1$ ):1186.
- So the 5 does make a significant difference.
- Caveat: these are the best I've found, does not mean best possible, so comparison not rigorous.


## Future directions

- Generate more primes.
- Use more prime powers?
- Smarter hill-climbing?
- Subset-product algorithms.

