Yet Another Conjecture of Goldbach: Preliminary Results

Jon Grantham
Hester Graves
Institute for Defense Analyses
Center for Computing Sciences
Bowie, Maryland
March 2018

Goldbach's Other Other Conjecture

- The conjecture I'm talking about is as follows:
- Let A be the set of numbers a for which $a^{2}+1$ is prime. Then every $a \in A(a>1)$ can be written in the form $a=b+c$, for $b, c \in A$.

Goldbach's Other Other Conjecture

- The conjecture I'm talking about is as follows:
- Let A be the set of numbers a for which $a^{2}+1$ is prime. Then every $a \in A(a>1)$ can be written in the form $a=b+c$, for $b, c \in A$.
- This comes from a October 1, 1742 letter from Goldbach to Euler.

obxkcd

WEAK:

EVERY ODD NUMBER GREATER THAN 5 ISTHE SUM OF THREE PRIMES

STRONG:

EVERY EVEN NUMBER

 GREATER THAN 2 IS THE SUM OF TWO PRIMES
VERY WEAK:

EVERY NUMBER GREATER THAN 7 IS THE SUM OF TWO OTHER NUMBERS

EXTREMELY WEAK:
NUMBERS JUST
KEEP GONG

GOLDBACH CONJECTURES

VERY
STRONG:

EVERY ODD

 NUMBER IS PRIME
EXTREMELY

 STRONG:- (Used under a Creative Commons Attribution-NonCommercial 2.5 license. See xckd.com/license.html)

Computations

- The first thing to observe is it would be useful to have a table of numbers of the form $x^{2}+1$ to test these ideas.

Computations

- The first thing to observe is it would be useful to have a table of numbers of the form $x^{2}+1$ to test these ideas.
- I noted that a table up to 10^{25} had been computed by Wolf and Gerbicz (2010).
- I said, "I can beat that."

Results of Computation

- Let $\pi_{q}(x)$ be the number of primes of the form $a^{2}+1$ up to x.
- $\pi_{q}\left(10^{26}\right)=237542444180$.
- $\pi_{q}\left(10^{27}\right)=722354138859$.
- $\pi_{q}\left(10^{28}\right)=2199894223892$.
- $\pi_{q}\left(6.25 \times 10^{28}\right)=5342656862803$.
- I talked about this at last September's PANTS, elsewhere in Tennessee.

Verification of Conjecture

- We have confirmed Goldbach's conjecture up to 10^{28}.
- I.e. for a up to 10^{14}.

Verification of Conjecture

- We have confirmed Goldbach's conjecture up to 10^{28}.
- I.e. for a up to 10^{14}.
- How do you confirm it, given this 30+ terabyte list?

Verification of Conjecture

- We have confirmed Goldbach's conjecture up to 10^{28}.
- I.e. for a up to 10^{14}.
- How do you confirm it, given this $30+$ terabyte list?
- Let a_{n} be the nth integer such that $a_{n}^{2}+1$ is prime.
- Is $a_{n}-a_{n-1}=a_{i}$ for some i ? How about $a_{n}-a_{n-2}$?
- How far back do you have to go?

Large values of $j\left(a_{n}\right)$

- Let $j\left(a_{n}\right)$ be the smallest value of i such that $a_{n}-a_{n-i}=a_{k}$.
- Let's look at champion values.

Large values of $j\left(a_{n}\right)$

- Let $j\left(a_{n}\right)$ be the smallest value of i such that $a_{n}-a_{n-i}=a_{k}$.
- Let's look at champion values.
- $j(74)=3$.
$-j(384)=6$.
$-j(860)=7$.
- $j(1614)=10$.
$-j(7304)=12$.
- $j(14774)=14$.
- $j(37884)=17$.
- $j(103876)=21$.
- $j(191674)=23$.
$-j(651524)=24$.

Even larger values of $j\left(a_{n}\right)$

- $j(681474)=26$.
$-j(1174484)=38$.
- $j(10564474)=44$.
- $j(19164094)=48$.
- $j(30294044)=52$.
- $j(279973066)=56$.
$-j(709924604)=58$.
- $j(2043908624)=64$.
- $j(2381625424)=65$.
- $j(4862417304)=69$.
- $j(8476270536)=70$.
- $j(10835743444)=71$.
$-j(58917940844)=83$.
$-j(88874251714)=90$.
- $j(109327832464)=105$.
- $j(2537400897706)=125$.

Even larger values of $j\left(a_{n}\right)$

- $j(681474)=26$.
- $j(1174484)=38$.
- $j(10564474)=44$.
- $j(19164094)=48$.
- $j(30294044)=52$.
$-j(279973066)=56$.
$-j(709924604)=58$.
- $j(2043908624)=64$.
- $j(2381625424)=65$.
- $j(4862417304)=69$.
- $j(8476270536)=70$.
- $j(10835743444)=71$.
$-j(58917940844)=83$.
$-j(88874251714)=90$.
- $j(109327832464)=105$.
- $j(2537400897706)=125 . \approx 4.376 \log (2537400897706)$.

Hypothesis H

- There are few unconditional results about primes of a special form.
- So let's assume a well-known conjecture.

Hypothesis H

- There are few unconditional results about primes of a special form.
- So let's assume a well-known conjecture.
- Schinzel's Hypothesis H (1958):
- Take a set of polynomials $f_{i}(x)$ such that there is no p for which $\prod f_{i}(a) \equiv 0$ for all $a \in \mathbb{F}_{p}$.
- The polynomials are simultaneously prime for infinitely many values of x.

How often is $j\left(a_{n}\right)>1$?

- Let $f_{1}(y)=(65 y+9)^{2}+1$ and $f_{2}(y)=(65 y+1)^{2}+1$.
- Both will be prime simultaneously infinitely often, assuming Hypothesis H.
- But will they be consecutive primes of the form $x^{2}+1$?

How often is $j\left(a_{n}\right)>1$?

- Let $f_{1}(y)=(65 y+9)^{2}+1$ and $f_{2}(y)=(65 y+1)^{2}+1$.
- Both will be prime simultaneously infinitely often, assuming Hypothesis H.
- But will they be consecutive primes of the form $x^{2}+1$?
- Yes!
- $(65 y+3)^{2}+1 \equiv 0 \bmod 5$.
- $(65 y+5)^{2}+1 \equiv 0 \bmod 13$.
- $(65 y+7)^{2}+1 \equiv 0 \bmod 5$.

How often is $j\left(a_{n}\right)>1$?

- Let $f_{1}(y)=(65 y+9)^{2}+1$ and $f_{2}(y)=(65 y+1)^{2}+1$.
- Both will be prime simultaneously infinitely often, assuming Hypothesis H.
- But will they be consecutive primes of the form $x^{2}+1$?
- Yes!
- $(65 y+3)^{2}+1 \equiv 0 \bmod 5$.
- $(65 y+5)^{2}+1 \equiv 0 \bmod 13$.
- $(65 y+7)^{2}+1 \equiv 0 \bmod 5$.
- Any such $f_{1}(x)-f_{2}(x)=8 \notin A$.
- So $j\left(a_{n}\right)>1$ infinitely often.

Growth of $j\left(a_{n}\right)$

- Assuming Hypothesis H , a more complicated version of this argument gives $\lim \sup _{n \rightarrow \infty} j\left(a_{n}\right)=\infty$.
- It is easy to form the polynomials, but mildly tricky to ensure that the polynomials aren't identically zero for some p.

Growth of $j\left(a_{n}\right)$

- Assuming Hypothesis H , a more complicated version of this argument gives $\lim \sup _{n \rightarrow \infty} j\left(a_{n}\right)=\infty$.
- It is easy to form the polynomials, but mildly tricky to ensure that the polynomials aren't identically zero for some p.
- A less complicated version of this argument gives $\liminf _{n \rightarrow \infty} j\left(a_{n}\right)=1$.

Future Work

- Apply Bateman-Horn conjecture to get explicit bounds on $j\left(a_{n}\right)$.
- Conjecture growth of average values of $j\left(a_{n}\right)$.
- Conjecture growth of champion values of $j\left(a_{n}\right)$.

